Skip to main content
Log in

A Green, Validated and Stability Indicating UV Spectrophotometric Determination And HPLC Comparison of Covid-19 Drug Favipiravir in Tablets

  • STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Favipiravir (FAV) is an antiviral drug in tablets, which has been originally intended for the treatment of influenza and determined by methods based mostly on liquid chromatography. Recently, FAV has been also tried for the treatment of COVID-19 in many countries, Here we present for the first time in the literature a facile and sensitive stability-indicating UV-spectrophotometric method of determining FAV that is effective on a micromolar scale. This green method was developed in aqueous drug solutions. Acidic, basic, oxidative degradation at room temperature as well as thermal degradation studies at 60°C were performed and fully validated in accordance with ICH guidelines, with 230 and 323 nm detection wavelengths used in linearity studies. The developed method was linear at concentrations between 5.0 – 30.0 μg/mL with correlation coefficient > 0.99. FAV concentrations of 1.20 and 3.70 μg/mL were calculated as LOD and LOQ levels, respectively. Recovery results were found within satisfactory precision values of 99.6 – 100.88%. The developed method gives results statistically comparable with those obtained by the HPLC technique. Due to the elimination of FAV mainly in its intact form when applied at clinical doses, this method can easily be applied for clinical and routine analyses as well as in quality control laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. D. H. Goldhill, A. J. W. Te Velthuis, R. A. Fletcher, et al., Proc. Natl. Acad. Sci. U. S. A., 115, 11613 – 11618 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO Covid-19 (2020); https://www.who.int/emergencies/diseases/novel-coronavirus-20193.

  3. U. Agrawal, R. Raju and Z. F. Udwadia, Med. J. Armed. Forces. India, 76, 370 – 376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. L. Naesens, L. W. Guddat, D. T. Keough, et al., Mol. Pharmacol., 84, 615 – 629 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. V. Madelain, T. H. Nguyen, A. Olivo, et al., Clin. Pharmacokinet., 55, 907 – 923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Furuta, B. B. Gowen, K. Takahashi, et al., Antivir. Res., 100, 446 – 454 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. O. Ayten, C. Ozdemir, U. A. Akturk and N. Sen, Eurasian J. Pulmonol., 22, 35 – 44 (2020).

    Article  Google Scholar 

  8. Ý. Bulduk, Acta Chromatogr., 33, 209 – 215 (2021).

    Article  CAS  Google Scholar 

  9. T. H. Nguyen, J. Guedj, X. Anglaret, et al., PLoS Negl. Trop. Dis., 11, e0005389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. V. Madelain, J. Guedj, T. H. T. Nguyen, et al., Antimicrob. Agents Chemother., 61, e01305 – 16 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. M. I. Morsy, E. G. Nouman, Y. M. Abdallah, et al., J. Pharm. Biomed. Anal., 199, 114057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. R. Mamdouh, K. A. Badr, N. S. Abdel-Naby, and M. M. Ayyad, Biomed. Chromatog., 35, e5098 (2021).

    Google Scholar 

  13. I. E. Mikhail, H. Elmansi, F. Belal, and A. E. Ibrahim, Microchem. J., 165, 106189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. M. Megahed, A. A. Habib, S. F. Hammad, and A. H. Kamal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 249, 119241 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. S. Allahverdiyeva, O. Yunusoğlu, Y. Yardım, and Z. Şentürk, Anal. Chim. Acta, 1159, 338418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. A. Mohamed, G. M. G. Eldin, S. M. Ismail, et al., J. Electroanal. Chem., 895, 115422 (2021).

    Article  CAS  Google Scholar 

  17. M. Bakshi and S. Singh, J. Pharm. Biomed. Anal., 28, 1011 – 1040 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. I. C. H. S. Committee, ICH Q2B validation of analytical procedures: methodology, Eur. Agency Eval. Med. Prod. Int. Comm. Harmon., London (1996).

    Google Scholar 

  19. N. Tkachenko, Optical Spectroscopy, Methods and Instrumentations, Elsevier, Amsterdam (2016).

  20. Handbook of Pharmaceutical Excipients, Eighth Edition, ed. by Paul J. Sheskey, Walter G. Cook and Colin G. Cable, Pharmaceutical Press and American Pharmacists Association (2017).

Download references

Acknowledgements

The authors would like to thank Biophore India Pharmaceuticals for allowing them to use the HPLC method developed in this work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sena Caglar-Andac.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evcil, I., Pehlivanoglu, H., Boğa, M. et al. A Green, Validated and Stability Indicating UV Spectrophotometric Determination And HPLC Comparison of Covid-19 Drug Favipiravir in Tablets. Pharm Chem J 57, 584–589 (2023). https://doi.org/10.1007/s11094-023-02927-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02927-9

Keywords

Navigation