Skip to main content
Log in

In Vitro Cytotoxic Activity and Identification of Bioactive Compounds Isolated from Olea europaea and Syzygium aromaticum Plants

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Natural products have been conventional in traditional medicine and still used presently to cure many diseases. In the present study, extracts of two plants – Olea europaea and Syzygium aromaticum – were tested for their phytochemical compositions, cytotoxic effect on hepatocellular carcinoma cells, and chemical profile of the most active fractions. Both plants were extracted with 85% methanol and then fractionated with various solvents. Hemolysis and cytotoxicity effects on normal (Vero) and hepatocellular carcinoma (HepG2) cells were examined. Chemical profiles were studied using GC-MS and chromatographic isolation on silica gel. Phytochemical screening revealed that both plants contain carbohydrates, saponins and flavonoids, while steroids were found only in O. europaea and alkaloids were found only in S. aromaticum. Hemolysis assay showed complete safety of O. europaea, while S. aromaticum exhibited low toxicity. Furthermore, the EtOAc fraction of O. europaea and BuOH fraction of S. aromaticum showed the best IC50 against HepG2. The GC-MS analysis of EtOAc fraction of O. europaea revealed 15 compounds, the major one being α-linoleic acid methyl ester, and the chromatographic separation of BuOH fraction of S. aromaticum resulted in a pure compound of 3-O-methyl-butyrate-6,7,3',4'-tetrahydroxy-5-methoxy-8-methylflavan. Thus, the study proved that the two title plants have components possessing cytotoxic activity against HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. P. Temin, Pharmacogn. J., 8(4), 395 – 398 (2016).

    Google Scholar 

  2. G. E. Batiha, L. M. Alkazmi, L. G. Wasef, et al., Biomolecules, 10(202), 1 – 16 (2020).

    Google Scholar 

  3. F. Mujeeb, P. Bajpai, and N. Pathak, Biomed Res. Int., 2014, 497606 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. M. V. Gavrilin, A. V. Sedin, and S. P. Senchenko, Pharm. Chem. J., 46(6), 360 – 362 (2012).

    CAS  Google Scholar 

  5. R. García-Villalba, A. Carrasco-Pancorbo, C. Oliveras-Ferraros, et al., J. Pharm. Biomed. Anal., 51(2), 416 – 429 (2010).

    PubMed  Google Scholar 

  6. R. Ghanbari, F. Anwar, K. M. Alkharfy, et al., Int. J. Mol. Sci., 13(3), 3291 – 3340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Fezai, L. Senovilla, M. Jemaa, et al., J. Lipids, 2013, 1 – 7 (2013).

    Google Scholar 

  8. S. Marino, C. Festa, F. Zollo, et al., Anticancer Agents Med. Chem., 14(10), 1376 – 1385 (2014).

    PubMed  Google Scholar 

  9. B. Ryu, H. M. Kim, J. S. Lee, et al., J. Agric. Food Chem., 64(15), 3048 – 3053 (2016).

    CAS  PubMed  Google Scholar 

  10. R. Astuti, S. Listyowati, and W. Wahyuni, IOP Conf. Ser. Earth Environ. Sci., 299, 012059 (2019).

    Google Scholar 

  11. W. T. Eden, D. Alighiri, N. Wijayati, et al., Pharm. Chem. J., 55(3), 269 – 274, (2021).

    CAS  Google Scholar 

  12. M. I. Nassar, Carbohydr. Res., 341(1), 160 – 163 (2006).

    CAS  PubMed  Google Scholar 

  13. M. R. Farag and M. Alagawany, Chem. Biol. Interact., 279, 73 – 83 (2018).

    CAS  PubMed  Google Scholar 

  14. W. M. Rashed, M. A. M. Kandeil, M. O. Mahmoud, et al., J. Egypt Natl. Cancer Inst., 32(1), 5 (2020).

    Google Scholar 

  15. H. W. Sim and J. Knox, Curr. Probl. Cancer, 42(1), 40 – 48, (2018).

    PubMed  Google Scholar 

  16. J. Bielawski, BBA Gen. Subj., 1035(2), 214 – 217, (1990).

    CAS  Google Scholar 

  17. E. A. Morsi, H. O. Ahmed, H. Abdel-Hady, et al., Curr. Bioact. Compd., 16(9), 1306 – 1318, (2020).

    CAS  Google Scholar 

  18. H. Okasha, S. Samir, and S. M. Nasr, Bioorg. Chem., 115, 105266 (2021).

    CAS  PubMed  Google Scholar 

  19. H. Abdel-Hady, S. M. Nasr, and E. A. El-Wakil, Int. J. Pharm. Res., 11(2), 418 – 426 (2019).

    Google Scholar 

  20. N. Savithramma, M. L. Rao, and S. Ankanna, Middle-East J. Sci. Res., 5(4), 100 – 103 (2015).

  21. A. Prashar, I. C. Locke, and C. S. Evans, Cell Prolif., 39(4), 241 – 248, (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. P. S. Kumar, R. M. Febriyanti, F. F. Sofyan, et al., Pharmacogn. Res., 6(4), 350 – 354, (2014).

    CAS  Google Scholar 

  23. S. N. Malik, Int. J. Pharmacogn. Phytochem. Res., 7(2), 307 – 310 (2015).

    Google Scholar 

  24. S. O. Jimoh, L. A. Arowolo, and K. A. Alabi, Int. J. Curr. Microbiol. Appl. Sci., 6(7), 4557 – 4567 (2017).

    Google Scholar 

  25. L. Garba, H. Lawan, H. U. Puma, et al., J. Biochem. Microbiol. Biotechnol., 7(1), 5 – 9 (2019).

    Google Scholar 

  26. R. Naz, T. H. Roberts, A. Bano, et al., PLoS One, 15(7), e0236319 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Zaïri, S. Nouir, A. Zarrouk, et al., Food Sci. Nutr., 8(9), 4805 – 4813 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. W. Yi, C. C. Akoh, J. Fischer, and G. Krewer, Food Res. Int., 39(5), 628 – 638 (2006).

    CAS  Google Scholar 

  29. D. Slameòová, E. Horváthová, L. Wsólová, et al., Mutat. Res. Toxicol. Environ. Mutagen., 677(1), 46 – 52 (2009).

  30. A. Maalej, Z. Bouallagui, F. Hadrich, et al., Biomed. Pharmacother., 90, 179 – 186 (2017).

    CAS  PubMed  Google Scholar 

  31. S. K. Minasyan, T. A. Rozovskaya, M. K. Kukhanova, et al., Pharm. Chem. J., 23(10), 791 – 794 (1989).

    Google Scholar 

  32. M. Dallons, C. Schepkens, A. Dupuis, et al., Front. Pharmacol., 11, 79 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. S. N. Deshpande and D. G. Kadam, Asian J. Pharm. Clin. Res., 6, 99 – 101 (2013).

  34. A. A. Al-Huqail, G. A. Elgaaly, and M. M. Ibrahim, Saudi J. Biol. Sci., 25(7), 1420 – 1428 (2018).

  35. R. Devery, A. Miller, and C. Stanton, Biochem. Soc. Trans., 29(2), 341 – 344 (2001).

    CAS  PubMed  Google Scholar 

  36. V. Chajes, F. Lavillonnière, V. Maillard, et al., Nutr. Cancer., 45(1), 17 – 23 (2003).

    CAS  PubMed  Google Scholar 

  37. A. Sati, S. C. Sati, N. Sati, et al., Nat. Prod. Res., 31(6), 713 – 717 (2017).

    CAS  PubMed  Google Scholar 

  38. E. El-Demerdash, Toxicol. Appl. Pharmacol., 254(3), 238 – 244 (2011).

    CAS  PubMed  Google Scholar 

  39. R. D. Breeta, V. M. Grace, and D. D. Wilson, Basic-Clin. Pharmacol. Toxicol., 128(3), 366 – 378 (2021).

  40. M. Pinto, S. Araújo, M. Morais, et al., Acad. Bras. Sci., 89(3), 1671 – 1681 (2017).

    CAS  Google Scholar 

  41. H. W. Lin, I. Saul, V. L. Gresia, et al., Transl. Stroke Res., 5(1), 109 – 117 (2014).

    CAS  PubMed  Google Scholar 

  42. D. S. El-Agamy, M. A. Elkablawy, and H. M. Abo-Haded, Cancer Chemother. Pharmacol., 79(2), 399 – 409 (2017).

    CAS  PubMed  Google Scholar 

  43. A. B. Hamed, E. M. Mantawy, W. M. El-Bakly, et al., Futur. J. Pharm. Sci., 6(1), 31 (2020).

  44. R. Takeara, P. C. Jimenez, D. V. Wilke, et al., Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 151(3), 363 – 369 (2008).

    PubMed  Google Scholar 

  45. M. Skoula, R. J. Grayer, G. C. Kite, et al., Biochem. Syst. Ecol., 36(8), 646 – 654 (2008).

    CAS  Google Scholar 

  46. R. A. Susidarti, R. I. Jenie, M. Ikawati, et al., J. Appl. Pharm. Sci., 4(6), 89 – 97 (2014).

    Google Scholar 

  47. G. R. Kahiking, R. Rumampuk, and E. Pongoh, Fuller. J. Chem., 5(2), 53 (2020).

    Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

This work was based upon a research project (Grant No#128/K) supported by Theodor Bilharz Research Institute (TBRI), Giza, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Okasha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okasha, H., Abdel-Hady, H., Morsi, E.A. et al. In Vitro Cytotoxic Activity and Identification of Bioactive Compounds Isolated from Olea europaea and Syzygium aromaticum Plants. Pharm Chem J 56, 1123–1132 (2022). https://doi.org/10.1007/s11094-022-02761-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02761-5

Keywords

Navigation