Skip to main content

Advertisement

Log in

Cytotoxic Effects and Antitumor Activity of Polysaccharides Isolated from the Fruiting Body of Ganoderma lucidum Basidial Mushroom

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The work was devoted to the isolation of polysaccharides from Ganoderma lucidum basidiomycete raw material collected in Uzbekistan and the study of their cytotoxic effect and antitumor activity. Water-soluble polysaccharides were isolated from the basidiomycete raw material in a yield of 15.16% by successive water extraction. The isolated polysaccharides were purified from proteins by the Savage method. The amount of carbohydrates (52.74%) was determined using the phenol-sulfuric acid method. An analysis of the elemental composition showed that the isolated polysaccharide contained 5.27% N, 54.30% C, and 7.79% H. It was established that the isolated polysaccharides did not produce direct cytotoxic effects on CML and HeLa cells in vitro. The antitumor activity of the polysaccharides was studied in vivo. It was found that the isolated polysaccharides at 25 mg/kg/day for 10 d inhibited Ehrlich adenocarcinoma solid tumor growth in mice by 59.34 vol% and 60.21 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Maity, I. K. Sen, P. K. Maji, et al., Carbohydr. Polym., 123, 350 – 358 (2015); https://doi.org/10.1016/j.carbpol.2015.01.051; A. A. Khan, A. Gani, F. A. Masoodi, et al., Bioact. Carbohydr. Diet. Fibre, 11, 67 – 74 (2017); https://doi.org/10.1016/j.bcdf.2017.07.006.

  2. L. B. Zhou and B. Chen, Int. J. Biol. Macromol., 48(1), 1 – 4 (2011); https://doi.org/10.1016/j.ijbiomac.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Yu, M. Shen, Q. Song, and J. Xie, Carbohydr. Polym., 183, 91 – 101 (2018); https://doi.org/10.1016/j.carbpol.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  4. J. Shen, H. Park, Y. Xia, G. Kim, et al., Carbohydr. Polym., 103, 319 – 324 (2014); https://doi.org/10.1016/j.carbpol.2013.12.044.

    Article  CAS  PubMed  Google Scholar 

  5. U. Lindequist, T. H. J. Niedermeyer, and W. D. Julich, Evidence-Based Complementary Altern. Med., 96, 285 – 299 (2005); https://doi.org/10.1093/ecam/neh107.

    Article  Google Scholar 

  6. S. P. Wasser, Appl. Microbiol. Biotechnol., 60, 258 – 274 (2002); https://doi.org/10.1007/s00253-002-10767.

    Article  CAS  PubMed  Google Scholar 

  7. G. A. Khalilova, A. S. Turaev, B. I. Mukhitdinov, et al., Khim. Rastit. Syr’ya, No. 3, 99 – 106 (2021); https://doi.org/10.14258/jcprm.2021039028.

  8. S. B. Khaitmetova, A. S. Turaev, B. I. Mukhitdinov, and G. A. Khalilova, Khim. Rastit. Syr’ya, No. 4, 75 – 82 (2021); https://doi.org/10.14258/jcprm.2021048412.

  9. L. B. Azimova, A. V. Filatova, A. S. Turaev, and D. T. Dzhurabaev, Khim. Rastit. Syr’ya, No. 3, 115 – 122 (2021); https://doi.org/10.14258/jcprm.2021039173.

  10. S.-F. Liao, C.-H. Liang, M.-Y. Ho, T.-L. Hsu, et al., Proc. Natl. Acad. Sci. USA, 110(34), 13809 – 13814 (2013); https://doi.org/10.1073/pnas.1312457110.

    Article  PubMed  PubMed Central  Google Scholar 

  11. X.-F. Bao, X.-S. Wang, Q. Dong, J.-N. Fang, et al., Phytochemistry, 59(2), 175 – 181 (2002); https://doi.org/10.1016/s0031-9422(01)00450-2.

    Article  CAS  PubMed  Google Scholar 

  12. B. Boh, Recent Pat. Anticancer Drug Discov., 8(3), 255 – 287 (2013); https://doi.org/10.2174/1574891x113089990036.

    Article  CAS  PubMed  Google Scholar 

  13. D. Sohretoglu and S. Huang, Anticancer Agents Med. Chem., 18(5), 667 – 674 (2018); https://doi.org/10.2174/1871520617666171113121246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X.-Y. Cao, J.-L. Liu, W. Yang, et al., Mol. Med. Rep., 12, 2383 – 2389 (2015); https://doi.org/10.3892/mmr.2015.3648.

    Article  CAS  PubMed  Google Scholar 

  15. USSR State Pharmacopoeia: No. 2. General Methods of Analysis. Drug Raw Material, 11th Ed., Meditsina, Moscow (1990), p. 400.

  16. M. Dubois, K. A. Gilles, J. Hamilton, et al., Anal. Chem., 28, 350 – 356 (1956).

    Article  CAS  Google Scholar 

  17. P. A. Yakimov, Chaga and Its Medicinal Use for Stage IV Cancer [in Russian], Medgiz, Leningrad (1959), pp. 36 – 49.

  18. L. Ren, C. Perera, and Y. Hemar, Food Funct., 3, No. 11, 1118 – 1130 (2012); https://doi.org/10.1039/c2fo10279j.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Khalilova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 8, pp. 21 – 24, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilova, G.A., Turaev, A.S., Mulkhitdinov, B.I. et al. Cytotoxic Effects and Antitumor Activity of Polysaccharides Isolated from the Fruiting Body of Ganoderma lucidum Basidial Mushroom. Pharm Chem J 56, 1045–1048 (2022). https://doi.org/10.1007/s11094-022-02750-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02750-8

Keywords

Navigation