Skip to main content
Log in

Quenching Studies as Important Toolkit for Exploring Binding Propensity of Metal Complexes with Serum Albumin and DNA (A Review)

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Coordination complexes have played an important role in medicine since ancient times; recently their pharmacological activity has been the subject of utmost interest. In this context, search for new metal-based complexes with therapeutic abilities has encouraged researchers to synthesize, characterize and explore metal complexes for pharmacological activities. During this pursuit, understanding of the mode of interactions between biological targets and potential metal complexes comes to the forefront. Among biomolecules, DNA and proteins are the chief molecular targets for drugs to circumvent various diseases. Small molecules (metal complexes) can bind with DNA and alter DNA replication, block cell division and cause cell death, making these complexes good potential candidates for the study and development of new therapeutic modalities as anti-cancer agents. Proteins such as serum albumin (SA) play an integral part in the pharmacodynamics and pharmacokinetics of drugs. Investigation of complex-protein interaction is imperative as SA plays an important part in the absorption, distribution, metabolism and efficacy of drugs. Metal complexes with biologically important ligands have got more potent activities as compared to the parent ligand. As a result, studies of the affinity and mechanisms of small molecules interacting with bio-molecules (DNA and SA) become urgent. Spectroscopic techniques are preferred over traditional methods as they are simple, quick and highly reproducible besides providing vital information regarding the nature of binding and specific binding sites present in macromolecules. In this review, emphasis is laid on the employment of optical absorption and fluorescence spectroscopy as a handy tool-kit for studying the metal complex–DNA/SA interactions with focus on the factors affecting the binding propensity and quenching techniques (absorption and fluorescence) engaged in predicting the mechanism and assessing the interactions involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. K. L. Haas and K. J. Franz, Chem. Rev., 109(10), 4921 – 4960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Anasamy, C. F. Chee, Y. F. Wong, et al., Appl. Organomet. Chem., 35(2), 1 – 33 (2021).

    Article  CAS  Google Scholar 

  3. C. Bonaccorso, T. Marzo and D. L. Mendola, Pharmaceuticals, 13(1), 1 – 19 (2020).

    Article  CAS  Google Scholar 

  4. P. Jia, R. Ouyang, P. Cao, et al., J. Coord. Chem., 70(13), 2175 – 2201 (2017).

    Article  CAS  Google Scholar 

  5. J. A. Dewry and P. T. Gunning, Coord. Chem. Rev., 255(3–4), 459 – 472 (2011).

    Article  CAS  Google Scholar 

  6. S. Rafique, M. Idrees, A. Nasim, et al., Biotechnol. Mol. Biol. Rev., 5(2), 38 – 45 (2010)

    CAS  Google Scholar 

  7. A. Mukherjee and P. J. Sadler, in: Wiley Encyclopedia of Chemical Biology, John Wiley & Sons (2009), Vol. 3.

  8. G. J. Kontoghiorghes, Int. J. Mol. Sci., 21(7), 1 – 8 (2020).

    Article  Google Scholar 

  9. Y. Wang, C. Zhang and F. Liu, Food Agric. Immunol., 31(1), 1079 – 1103 (2020).

    Article  CAS  Google Scholar 

  10. J. Anastassopoulou and T. Theophanides, The Role of Metal Ions in Biological Systems and Medicine, in: D. P. Kessissoglou (Ed.), Bioinorganic Chemistry, NATO ASI Series (Series C: Mathematical and Physical Sciences), Springer (1995), pp. 209 – 459

  11. K. D. Mjos and C. Orvig, Chem. Rev., 114(8), 4540 – 4563 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. L. Nagy, G. Csintalan, E. Kálmán, et al., Acta Pharm. Hung., 73(4), 221 – 236 (2003).

    CAS  PubMed  Google Scholar 

  13. L. Quintanar and M. H. Lim, J. Biol. Inorg. Chem., 24(8), 1137 – 1139 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. A. Gaeta and R. C. Hider, Br. J. Pharmacol., 146(8), 1041 – 1059 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G. Tamasi, F. Serinelli, M. Consumi, et al., J. Biochem., 102(10), 1862 – 1873 (2008).

    CAS  Google Scholar 

  16. C.-M. Che and F.-M. Siu, Curr. Opin. Chem. Biol., 14(2), 255 – 261 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. R. W. Y. Sun, D. L. Ma, E. L. M. Wong and C. M. Che, Dalton Trans., (43), 4884 – 4892 (2007).

    Google Scholar 

  18. A. Elkashif and M. N. Seleem, Sci. Rep., 10, 1 – 9 (2020)

    Article  CAS  Google Scholar 

  19. C. I. Yeo, K. K. Ooi, and E. R. T. Tiekink, Molecules, https: // www.ncbi.nlm.nih.gov / pmc / articles / PMC6100309 / 23(6), 1 – 26 (2018).

  20. N. R. Panyala, E. M. Pena-Mendez, and J. Havel, J. Appl. Biomed., 7(2), 75 – 91 (2009).

    Article  CAS  Google Scholar 

  21. V. Milacic, D. Fregona and Q. P. Dou, Histol. Histopathol., 23(1), 101 – 108 (2008).

    CAS  PubMed  Google Scholar 

  22. E. R. T. Tiekink, Crit. Rev. Oncol. Hematol., 42(3), 225 – 248 (2002).

    Article  PubMed  Google Scholar 

  23. P. C. Bruijnincx and P. J. Sadler, Curr. Opin. Chem. Biol., 12(2), 197 – 206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Zhang, W. Shi, W. Zhang, and D. Mitchison, Microbiol. Spectr., 2(4),1 – 12 (2013).

    CAS  PubMed  Google Scholar 

  25. M. Ali, M. Ahmed, S. Hafiz, et al., Iran. J. Pharm. Res., 17(1), 93 – 99 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. K. I. Ansari, J. D. Grant, S. Kasiri, et al., J. Inorg. Biochem., 103(5), 818 – 826 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. X. Tang, J. Jia, F. Li, et al., Oncotarget, 8(49), 86277 – 86286 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. D. Kovala-Demertzi, D. Hadjipavlou-Litina, M. Staninska, et al., J. Enzyme Inhib. Med. Chem., 24(3), 742 – 752 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. A. Hille, I. Ott, A. Kitanovic, et al., J. Biol. Inorg. Chem., 14(5), 711 – 725 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. H. Liu, Y. Qu and X. Wang, Future Med. Chem., 10(6), 679 – 701 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. K. H. Thompson, J. H. McNeill and C. Orvig, Chem. Rev., 99(9), 2561 – 2572 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. K. H. Thompson and C. Orvig, Met. Ions Biol. Syst., 41, 221 – 252 (2004).

    CAS  PubMed  Google Scholar 

  33. K. H. Thompson and C. Orvig, J. Inorg. Biochem., 100(12), 1925 – 1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. C. Orvig, K. H. Thompson, M. Battell and J. H. McNeill, in: Metal Ions in Biological Systems, Vol. 31, H. Sigel and A. Sigel (Eds.), Marcel Dekker: New York (1995), pp. 575 – 594.

  35. K. H. Thompson, J. Lichter, C. LeBel, et al., J. Inorg. Biochem., 103(4), 554 – 558 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. K. H. Thompson, J. Chiles, V. G. Yuen, et al., J. Inorg. Biochem., 98(5), 683 – 690 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. V. G. Yuen, S. Bhanot, M. L. Battell, et al., Can. J. Physiol. Pharmacol., 81(11), 1049 – 1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. V. G. Yuen, P. Caravan, L. Gelmini, et al., J. Inorg. Biochem., 68(2), 109 – 116 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. A. M. A. Adam, A. M. Naglah, M. A. Al-Omar, and M. S. Refat, Int. J. Immunopathol. Pharmacol., 30(3), 272 – 281(2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Treviño, A. Díaz, E. Sánchez-Lara, et al., Biol. Trace Elem. Res., 188(1), 68 – 98 (2019).

    Article  PubMed  CAS  Google Scholar 

  41. M. S. More, P. G. Joshi, Y. K. Mishra, and P. K. Khanna, Mater Chem. Today, 14, 100195 (2019).

    Article  CAS  Google Scholar 

  42. M. Claudel, J. V. Schwarte, and K. M. Fromm, Chemistry, 2(4), 849 – 899 (2020).

    Article  CAS  Google Scholar 

  43. S. Fletcher and A. D. Hamilton, Curr. Opin. Chem. Biol., 9(6), 632 – 638 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. N. C. Kasuga, K. Sekino, C. Koumo, et al., J. Inorg. Biochem., 84(1–2), 55 – 65 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. A. Buschini, S. Pinelli, C. Pellacani, et al., J. Inorg. Biochem., 103(5), 666 – 677 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. S. Kirschner, Y.-K. Wei, D. Francis, and J. G. Bergman, J. Med. Chem., 9(3), 369 – 372 (1966).

    Article  CAS  PubMed  Google Scholar 

  47. A. Garoufis, S. Hadjikakou, and N. N. Hadjiliadis, Coord. Chem. Rev., 253(9–10) 1384 – 1397 (2009).

    Article  CAS  Google Scholar 

  48. I. P. Ejidike and P. A. Ajibade, Rev. Inorg. Chem., 35(4), 191 – 224(2015).

    Article  CAS  Google Scholar 

  49. B. Balasubramaniam, Prateek, S. Ranjan, et al., ACS Pharmacol. Transl. Sci., 4(1), 8 – 54 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. A. M. Pyle, J. P. Rhemann, R. Meshoyrer, et al., J. Am Chem. Soc., 111(8), 3051 – 3058 (1989).

    Article  CAS  Google Scholar 

  51. Y. Li, Z.-Y. Yang and M.-F. Wang, J. Fluoresc., 20(4), 891 – 905 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. B. J. Pages, D. L. Ang, E. P. Wright, and J. R. Aldrich-Wright, Dalton Trans., 44(8) 3505 – 3526 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. M. A. Malik, O. A. Dar, P. Gull, et al., Med. Chem. Commun., 9(3), 409 – 436 (2018).

    Article  CAS  Google Scholar 

  54. M. M. U. Mazumder, A. Sukul, S. K. Saha, et al., Alexandria J. Med., 54(1), 23 – 26 (2018).

    Article  Google Scholar 

  55. R. Ammal, A. R. Prasad, and A. Joseph, Heliyon, 6(10), e05144 (2020).

    Article  Google Scholar 

  56. A. A. Sharfalddin, A.-H. Emwas, M. Jaremko, and M. A. Hussien, New J. Chem., 45(21), 9598 – 9613 (2021).

    Article  CAS  Google Scholar 

  57. S. U. Rehman, Z. H. Chohan, F. Gulnaz, and C. T. Supuran, J. Enzyme Inhib. Med. Chem., 20(4), 333 – 340 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. U. Schatzschneider, Eur. J. Inorg. Chem., 2010(10), 1451 – 1467 (2010).

    Article  CAS  Google Scholar 

  59. M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 2(3), 187 – 210 (1973).

    Article  CAS  Google Scholar 

  60. S. A. Elsayed , E. A. Saad, and S. I. Mostafa, Med. Chem., 19(11), 913 – 922 (2019).

    CAS  Google Scholar 

  61. T. Bal-Demirci, G. Congur, A. Erdem, et al., New J. Chem., 39(7), 5643 – 5653 (2015).

    Article  CAS  Google Scholar 

  62. I. Warad, H. Suboh, N. Al-Zaqri, et al., RSC Adv., 10(37), 21806 – 21821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. U. Ndagi, N. Mhlongo, and M. E Soliman, Drug Des. Devel. Ther., 11, 599 – 616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Schmidt, D. Gonzalez and H. Derendorf, J. Pharm. Sci., 99(3), 1107 – 1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. S. K. Pawar and S. Jaldappagari, J. Pharm. Anal., 9(4), 274 – 283 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Y. Li, Z. Y. Yang and M. F. Wang, Eur. J. Med. Chem., 44(11), 4585 – 4595 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. N. Shahabadi, S. M. Fili and F. Kheirdoosh, J. Photochem. Photobiol. B, 128, 20 – 26 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. P. Ghosh and P. Purkayastha, RSC Adv., 4(43), 22442 – 22448 (2014)

    Article  CAS  Google Scholar 

  69. A. E. Radi, A. E. El-Naggar and H. M. Nassef, Electrochim. Acta, 129, 259 – 265(2014).

    Article  CAS  Google Scholar 

  70. P. Venmathy, J. Jeyasundari, V. S. Vasantha, et al., Eur. Chem. Bull., 7(1), 10 – 19 (2018).

    Article  CAS  Google Scholar 

  71. M. T. Behnamfar, H. Hadadzadeh, J. Simpson, et al., Spectrochim. Acta, A 134, 502 – 516 (2015).

    Article  CAS  Google Scholar 

  72. M. M. Aleksi and V. Kapetanovi, Acta Chim. Slov., 61, 555 – 573 (2014)

    Google Scholar 

  73. M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol., B, 124, 1 – 19 (2013).

    Article  CAS  Google Scholar 

  74. J-H Shi, T-T Liu, M Jiang, et al., J. Photochem. Photobiol., B, 147,47 – 55 (2015).

    Article  CAS  Google Scholar 

  75. A. Kellett, Z. Molphy, C. Slator, et al., Chem. Soc. Rev., 48(4), 971 – 988 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. R. Pareta, A. Brindley, M. Edirisinghe, et al., J. Mater Sci: Mater Med., 16(10), 919 – 925 (2005).

    CAS  Google Scholar 

  77. S. Bhadra, P. Choubey, D. Bhadra and G. P. Agrawal, Indian J. Pharm. Sci., 65(5), 503 – 509 (2003).

    CAS  Google Scholar 

  78. S. S. Singh and J. Mehta, J. Chromatogr. B, 834(1–2), 108 – 116 (2006).

    Article  CAS  Google Scholar 

  79. E. Meggers, Chem Commun., (9), 1001 – 1010 (2009).

    Article  CAS  Google Scholar 

  80. A. Tarushi, S. Perontsis, A. G. Hatzidimitriou, et al., J. Inorg. Biochem., 149, 68 – 79 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. S. R. Pattan, S. B. Pawar, S. S. Vetal, et al., Indian Drugs, 49(11), 5 – 11 (2012).

    Article  Google Scholar 

  82. A. Karadað, N. Korkmaz, A. Aydýn, et al., Sci. Rep., 10, 1 – 17 (2020)

    Article  CAS  Google Scholar 

  83. A. Massey, Y. Z. Xu and P. Karran, Curr. Biol., 11(14), 1142 – 1148(2001).

    Article  CAS  PubMed  Google Scholar 

  84. E. Dubler, in: Metal Ions in Biological Systems, A. Sigel, H. Sigel (Eds.), Vol. 32, Marcel Dekker: Basel (1996), Chapter 8.

  85. R. Cini, Comments Inorg. Chem., 22(3–4), 151 – 186 (2000).

    Article  CAS  Google Scholar 

  86. Z. Kazemi, H. A. Rudbari, V. Mirkhani, et al., J. Mol. Struct., 1096, 110 – 120 (2015).

    Article  CAS  Google Scholar 

  87. F. Arjmand, Z. Afsan, and T. Roisnel, RSC Adv., 8(65), 37375 – 37390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. Ambika, Y. Manoj Kumar, S. Arunachalam, et al., Sci. Rep., 9, 1 – 14 (2019).

    Article  CAS  Google Scholar 

  89. K. A. Connors (Ed.), Binding Constants: The Measurement of Molecular Complex Stability, Wiley-Interscience: New York (1987).

    Google Scholar 

  90. R. Zini, Methods in drug protein binding analysis, in: H. Kuemmerle, et al. (Eds.), Human Pharmacology: The Basis of Clinical Pharmacology. Elsevier Science Publishers: Amsterdam (1991), pp. 235 – 282.

  91. J. Huang, J. Pharm. Sci., 72(11), 1368–1369 (1983).

    Article  CAS  PubMed  Google Scholar 

  92. G. F. Lockwood and J. G. Wagner, J. Pharm. Pharmacol., 35(6), 387 – 388 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. J. Oravcova, B. Bohs, and W. Lindner, J. Chromatogr. B: Biomed. Appl., 677(1), 1 – 28 (1996).

    Article  Google Scholar 

  94. W. W. Mapleson, J. Pharmacol. Methods, 17(3), 231 – 242, (1987).

    Article  CAS  PubMed  Google Scholar 

  95. K. Vuignier, J. Schappler and J.-L. Veuthey, Anal. Bioanal. Chem., 398(1), 53 – 66 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Y. C Liu, Z. Y. Yang, J. Du, et al., Chem. Pharm. Bull., 56(4), 443 – 451 (2008).

    Article  CAS  Google Scholar 

  97. M. Ehteshami, F. Rasoulzadeh, S. Mahboob, and M. R. Rashidi, J. Lumin., 135, 164 – 169 (2013).

    Article  CAS  Google Scholar 

  98. P. Sengupta, P. S. Sardar, P. Roy, et al., J. Photochem. Photobiol. B, 183, 101 – 110 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. G. Vignesh, S. Arunachalam, S. Vignesh, and R. A. James, Spectrochim. Acta A, 96, 108 – 116 (2012).

    Article  CAS  Google Scholar 

  100. F. Xue, C.-Z. Xie, Y.-W. Zhang, et al., J. Inorg. Biochem., 115, 78 – 86 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. M. Asadi, Z. Asadi, L. Zarei, et al., Spectrochim. Acta Part A, 133, 697 – 706 (2014).

    Article  CAS  Google Scholar 

  102. F. Samari, B. Hemmateenejad, M. Shamsipur, et al., Inorg. Chem., 51(6), 3454 – 3464 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. S. M. Akbar, K. Sreeramulu, and H. C. Sharma, J. Bioenerg. Biomembr., 48(3), 241 – 247 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. M. Sasmal, R. Bhowmick, A. S. M. Islam, et al., ACS Omega, 3(6), 6293 – 6304 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Y. Xiang and F. Wu, Spectrochim. Acta A, 77(2), 430 – 436 (2010).

    Article  CAS  Google Scholar 

  106. G. Dravecz, T. Z. Jánosi, D. Beke, et al., Phys. Chem. Chem. Phys., 20(19), 13419 – 13429 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Second Edition, Kluwer Academic / Plenum Publishers: New York (1999).

  108. J. R. Lakowicz and G. Weber, Biochemistry, 12(21), 416 – 4170 (1973).

    Google Scholar 

  109. S. S. Lehrer, Biochemistry, 10(17), 3254 – 3263 (1971).

    Article  CAS  PubMed  Google Scholar 

  110. S. Fountoulaki, F. Perdih, I. Turel, et al., J. Inorg. Biochem., 105(12), 1645 – 1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. A. Tarushi, X. Totta, C. P. Raptopoulou, et al., Dalton Trans., 41(23), 7082 – 7091(2012)

    Article  CAS  PubMed  Google Scholar 

  112. A. Tarushi, C. P. Raptopoulou, V. Psycharis, et al., J. Inorg. Biochem., 140, 185 – 198 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. S. Perontsis, A. Tialiou, A. G. Hatzidimitriou, et al., Polyhedron, 138, 258 – 269 (2017).

    Article  CAS  Google Scholar 

  114. C. Tolia, A. Papadopoulos, C. P. Raptopoulou, et al., J. Inorg. Biochem., 123, 53 – 65 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. A. Tarushi, P. Kastanias, C. P. Raptopoulou, J. Inorg. Biochem., 163, 332 – 345 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. F. Dimiza, A. N. Papadopoulos, V. Tangoulis, et al., Dalton Trans., 39(19), 4517 – 4528 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. F. Dimiza, S. Fountoulaki, A. N. Papadopoulos, et al., Dalton Trans., 40(34), 8555 – 8568 (2011)

    Article  CAS  PubMed  Google Scholar 

  118. M. Kyropoulou, C. P. Raptopoulou, V. Psycharis and G. Psomas, Polyhedron, 61, 126 – 136 (2013).

    Article  CAS  Google Scholar 

  119. R. Mudavath, R. K. Vuradi, U. Bathini, et al., Nucleosides, Nucleotides, Nucleic Acids, 38(11), 874 – 900 (2019).

    Article  CAS  Google Scholar 

  120. V. D. Suryawanshi, L. S. Walekar, A. H. Gore, et al., J. Pharm. Anal., 6(1), 56 – 63 (2016)

    Article  PubMed  Google Scholar 

  121. N. Seedher and P. Agarwal, J. Lumin., 130(10), 1841 – 1848 (2010).

    Article  CAS  Google Scholar 

  122. R. P. Sharma, A. Saini, P. Venugopalan et al, Polyhedron, 56, 34 – 43 (2013).

    Article  CAS  Google Scholar 

  123. A. T. Buddanavar and S. T. Nandibewoor, J. Pharm. Anal., 7(3), 148 – 155 (2017).

    Article  PubMed  Google Scholar 

  124. P. D. Ross and S. Subramanian, Biochemistry, 20(11), 3096 – 3102 (1981).

    Article  CAS  PubMed  Google Scholar 

  125. Y. Ni, S. Su, and S. Kokot, Anal. Chim. Acta, 580(2), 206 – 215 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. S. Hashempour, N. Shahabadi, A. Adewoye, et al., Molecules, 25(22), 1 – 17 (2020)

    Article  CAS  Google Scholar 

  127. G. F. Shen, T. T. Liu, Q. Wang, et al., J. Photochem. Photobiol. B, 153, 380 – 390 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Q. Lu, C. Chen, S. Zhao, Int. J. Food Prop., 19(11), 2481 – 2494 (2016)

    Article  CAS  Google Scholar 

  129. M. T. Rehman, H. Shamsi and A. U. Khan, Mol. Pharmaceut., 11(6), 1785 – 1797 (2014).

    Article  CAS  Google Scholar 

  130. Y. J. Hu, Y. Liu, Z. B. Pi, and S. S. Qu, Bioorg. Med. Chem., 13, 6609 – 6614 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. N. S. Radisavljeviæ, A. D. Kesic, D. Æociæ, et al., New J. Chem., 44(26), 11172 – 11187 (2020).

    Article  Google Scholar 

  132. C. Ozluer and H. E. S. Kara, J. Photochem. Photobiol. B, 138, 36 – 42 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. S. Agarwal, D. K. Jangir, P. Singh and R. Mehrotra, J. Photochem. Photobiol. B, 130, 281 – 286 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. R. F. Pasternack, E. J. Gibbs and J. J. Villafranca, Biochemistry, 22(10), 2406 – 2417 (1983).

    Article  CAS  PubMed  Google Scholar 

  135. J. Kang, H. Wu, X. Lu, et al., Spectrochim. Acta, Part A, 61(9), 2041 – 2047 (2005).

    Article  CAS  Google Scholar 

  136. H. Dezhampanah, A. Bordbar, and S. Tangestaninejad, Eur. J. Chem., 1(4),307 – 311, (2010).

    Article  CAS  Google Scholar 

  137. A. Shah, E. Nosheen, S. Munir, et al., J. Photochem. Photobiol. B, 120, 90 – 97 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Y.-J. Guo, J.-B. Chao, and J.-H. Pan, Spectrochim. Acta, Part A, 68(2), 231 – 236 (2007).

    Article  CAS  Google Scholar 

  139. V. G. Vaidyanathan and B. U. Nair, J. Inorg. Biochem., 94(1–2), 121 – 126 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Z.-H. Xu, F.-J. Chen, P.-X. Xi, et al., J. Photochem. Photobiol. A, 196, 77 – 83 (2008)

    Article  CAS  Google Scholar 

  141. R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, and B. U. Nair, Biochim. Biophys. Acta, 1475(2), 157 – 162 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. S. Dey, S. Sarkar, Hena Paul, et al., Polyhedron, 29(6), 1583 – 1587 (2010).

    Article  CAS  Google Scholar 

  143. M. Cory, D. D. McKee, J. Kagan, et al., J. Am. Chem. Soc., 107(8), 2528 – 2536 (1985).

    Article  CAS  Google Scholar 

  144. M. J. Waring, J. Mol. Biol., 13(1), 269 – 282 (1965).

    Article  CAS  PubMed  Google Scholar 

  145. N. Maurya, K. Imtiyaz, M. M. A. Rizvi, et al., RSC Adv., 10, 24203 – 24214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. S. Asadizadeh, M. Amirnasr, F. F. Tirani, et al., Inorg. Chim. Acta, 483, 310 – 320 (2018).

    Article  CAS  Google Scholar 

  147. B. Annaraj, C. Balakrishnan, and M. A. Neelakantan, J. Photochem. Photobiol. B, 160, 278 – 291 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. C. Iscel and V. T. Yilmaz, J. Photochem. Photobiol. B, 130, 115 – 121 (2014).

    Article  CAS  Google Scholar 

  149. S. S. Tartakoff, J. M. Finan, E J. Curtis, et al., Org. Biomol. Chem., 17(7), 1992 – 1998, (2019).

    Article  CAS  PubMed  Google Scholar 

  150. S. Arounaguiri, D. Easwaramoorthy, A. A. Kumar, et al., Proc. Indian Acad. Sci. (Chem. Sci.), 112(1), 1 – 17 (2000).

  151. F. Arjmand and A. Jamsheera, Spectrochim. Acta, Part A, 78(1), 45 – 51 (2011).

    Article  CAS  Google Scholar 

  152. R. Fekri, M. Salehi, A. Asadi and M. Kubicki, Polyhedron, 128, 175 – 187 (2017)

    Article  CAS  Google Scholar 

  153. H. Xu, K. C. Zheng, L. J. Lin, et al., J Inorg. Biochem., 98(1), 87 – 97 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. S. A. M. Sukri, L. Y. Heng and N. H. A. Karim, J. Fluoresc., 27(3), 1009 – 1023 (2017).

    Article  CAS  Google Scholar 

  155. N. Pravinand and N. Raman, Inorg. Chem, Commun., 36, 45 – 50 (2013)

    Article  CAS  Google Scholar 

  156. W. Y. Li, J. G. Xu, X. Q. Guo, et al, Spectrochim. Acta, Part A, 53(5), 781 – 787 (1997)

    Article  Google Scholar 

  157. N. Akbay, Z. Seferoðlu, and E. Gõk, J. Fluoresc., 19(6), 1045 – 1051(2009).

    Article  CAS  PubMed  Google Scholar 

  158. B. A. Armitage, Top. Curr. Chem., 253, 55 – 76 (2005).

    Article  CAS  Google Scholar 

  159. M. T. Carter and A. J. Bard, J. Am. Chem. Soc., 109(24), 7528 – 7530 (1987).

    Article  CAS  Google Scholar 

  160. F. G. Loontiens, P. Regenfuss, A. Zechel, et al., Biochemistry, 29(38), 9029 – 9039 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Bansal, P. Quenching Studies as Important Toolkit for Exploring Binding Propensity of Metal Complexes with Serum Albumin and DNA (A Review). Pharm Chem J 56, 545–558 (2022). https://doi.org/10.1007/s11094-022-02676-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02676-1

Keywords

Navigation