Skip to main content

Advertisement

Log in

Skin Wound Healing Potential and Antioxidant Effect of Hyaluronic Acid Extracted from Mytilus galloprovincialis and Crassostrea gigas

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This research work was devoted to studying the ability of hyaluronic acid (HA) to treat skin wounds in rats. HA, an immune-neutral polysaccharide, is widespread in the human body as it is necessary for several tissues and cellular functions and has been used in the clinical practice for more than three decades. For this purpose, we attempted to obtain and enrich HA-containing extracts from two species of molluscs collected at Bizerte lagoon, namely Mytilus galloprovincialis and Crassostrea gigas. Then, the wound healing potential of purified HA (hyaluronan) was tested on Wistar rats which were separated into 4 groups: control, treated with a marketed healing cream “Avene Cicalfate”, treated with HA isolated from M. galloprovincialis, and treated with HA isolated from C. gigas. After anesthesia, rats were submitted to back skin lesions (diameter 2 cm) and then treated daily until recovery. During the experiment, variation of the wound area was monitored. Results showed that the obtained net yield of HA was 3.8 mg/g dry weight and 1.9 mg/g dry weight for M. galloprovincialis and C. gigas respectively. Morphological analysis demonstrated that HA significantly accelerated wound repair through reepithelization. The mean wound surface was completely absent after 15 days of treatment with C. gigas hyaluronan. Based on these findings, it appears that mollusc HA has an obvious healing activity completely in accordance with its recognized effectiveness in dermo-cosmetology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. A. Burdick and G. D. Prestwich, Adv. Mater., 23, 41 – 56 (2011).

    Article  Google Scholar 

  2. N. Volpi and F. Maccari, Biochimie, 85, 619 – 625 (2003).

    Article  CAS  Google Scholar 

  3. K. Jansen, J. F. A. van der Werff, P. B. van Wachem, et al., Biomaterials, 25, 483 – 489 (2004).

    Article  CAS  Google Scholar 

  4. L. P. Amarnath, A. Srinivas, and A. Ramamurthi, Biomaterials, 27, 1416 – 1424 (2006).

    Article  CAS  Google Scholar 

  5. E. A. Turley, P. W. Noble, and L. Y. W. Bourguignon, J. Biol. Chem., 277, 4589 – 4592 (2002).

    Article  CAS  Google Scholar 

  6. B. P. Toole, T. N. Wight, and M. I. Tammi, J. Biol. Chem., 277, 4593 – 4596 (2002).

    Article  CAS  Google Scholar 

  7. V. C. Hascall, A. K. Majors, C. A. de la Motte, et al., Biochim. Biophys. Acta, 1673, 3 – 12 (2004).

    Article  CAS  Google Scholar 

  8. J. Y. Zhao, J. K. Chai, H. F. Song, et al., Int. Wound J., 10, 562 – 572 (2013).

    Article  Google Scholar 

  9. N. Shimizu, D. Ishida, A. Yamamoto, et al., J. Biomater. Sci., 25, 1278 – 1291 (2014).

    Article  CAS  Google Scholar 

  10. B. Bejaoui, D. Ferjani, N. Zaaboub, et al., Rev. Des Sci. De LEau, 23, 215 – 232 (2010).

    Google Scholar 

  11. T. Bitter and H. M. Muir, Anal. Biochem., 4, 330 – 334 (1962).

    Article  CAS  Google Scholar 

  12. X. J. Duan, L. Yang, X. Zhang, et al., J. Microbiol. Biotechnol., 18, 718 – 724 (2008).

    CAS  PubMed  Google Scholar 

  13. V. Rangaswamy, and D. Jain, Biotechnol. Lett., 30, 493 – 496 (2008).

    Article  CAS  Google Scholar 

  14. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Free Radic. Biol. Med., 21, 417 (1996).

    Article  CAS  Google Scholar 

  15. National Research Council: Guide for the Care and the Use of Laboratory Animals. National Institute of Health, Bethesda (1985).

  16. J. J. Morton and M. H. Malone, Arch. Int. Pharmacodyn. Ther., 196, 117 – 126 (1972).

    CAS  PubMed  Google Scholar 

  17. C. Qiu, P. Coutinho, S. Frank, et al., Curr. Biol. 13, 1697 – 703 (2003).

    Article  CAS  Google Scholar 

  18. J. R. Fraser, T. C. Laurent, and U. B. Laurent, J. Intern. Med., 242, 27 – 33 (1997).

    Article  CAS  Google Scholar 

  19. G. T. Balogh, J. Illes, Z. Szekely, et al., Arch. Biochem. Biophys., 410, 76 – 82 (2003).

    Article  CAS  Google Scholar 

  20. G. M. Campo, A. Avenoso, S. Campo, et al., Chem. Biol. Interact., 148, 125 – 138 (2004).

    Article  CAS  Google Scholar 

  21. H. D. Halicka, V. Mitlitski, J. Heeter, et al., Int. J. Mol. Med., 23, 695 – 699 (2009).

    CAS  PubMed  Google Scholar 

  22. K. Chunlin, S. Lanping, Q. Deliang, et al., Food Chem. Toxicol., 49, 2670 – 2675. (2011).

    Article  Google Scholar 

  23. M. Sharma, K. Sahu, S. P. Singh, et al., Artif. Cells Nanomed. Biotechnol., 46, 1009 – 1017 (2018).

    Article  CAS  Google Scholar 

  24. M. Ansari, A. Alizadeh, M. Paknejad, et al., J. Babol Univ. Medical Sci., 11, 7 – 12. (2009).

    Google Scholar 

  25. T. C. Laurent, U. B. G. Laurent, and J. R. E. Fraser, Ann. Rheum. Dis., 54, 429 – 432 (1995).

    Article  CAS  Google Scholar 

  26. G. M. Campo, A. Avenoso, G. Nastasi, et al., Biochim. Biophys. Acta, 1812, 1170 – 1181 (2011).

    Article  CAS  Google Scholar 

  27. A. G. Tavianatou, I. Caon, M. Franchi, et al., FEBS J., 286, 2883 – 2908 (2019).

    Article  CAS  Google Scholar 

  28. K.L. Aya and R. Stern, Wound Repair Regen., 22, 579 – 593 (2014).

    Article  Google Scholar 

  29. W. J. Chen and G. Abatangelo, Wound Repair Regen., 7, 79 – 89 (1999).

    Article  CAS  Google Scholar 

  30. S. Y. Na, S. H. Oh, K. S. Song, et al., J. Mater. Sci.: Mater. Med., 23, 2303 – 2313 (2012).

    CAS  Google Scholar 

  31. F. Zamboni, S. Vieira, R. L. Reis, et al., Prog. Mater. Sci., 97, 97 – 122 (2018).

    Article  CAS  Google Scholar 

  32. E. Aliyeva, S. Umur, E. Zafer, et al., Biomaterials, 25, 4633 – 4637 (2004).

    Article  Google Scholar 

  33. G. D. Phillips, R. A. Whitehe, and R. Kinghton, Am. J. Anat., 192, 257 – 262 (1991).

    Article  CAS  Google Scholar 

  34. T. A. Dechert, A. E. Ducale, S. I. Ward, et al., Wound Repair Regen., 14, 252 – 258 (2006).

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawzet Bouriga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouriga, N., Mili, S., Bahri, W.R. et al. Skin Wound Healing Potential and Antioxidant Effect of Hyaluronic Acid Extracted from Mytilus galloprovincialis and Crassostrea gigas. Pharm Chem J 56, 381–386 (2022). https://doi.org/10.1007/s11094-022-02647-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02647-6

Keywords

Navigation