Skip to main content

Advertisement

Log in

A Potential Method for Standardization of Multiphytoadaptogen: Tandem Mass Spectrometry for Analysis of Biologically Active Substances from Rhodiola rosea

  • MEDICINAL PLANTS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Tandem mass spectrometry (HPLC-MS/MS) was used to analyze biologically active compounds in extracts of the tuber and roots of Rhodiola rosea (family Crassulaceae) and in the pharmaceutical formulation Multiphytoadaptogen (MPA). Chromatography was run on Acquity UPLC BEH C18 columns with gradient elution. A TSQ Vantage ternary quadrupole mass spectrometer with electrospray ionization was used. MPA, like the Rhodiola rosea tuber/root extract, was found to contain salidroside, rosavin, rosarin, rosiridin, and rhodionin. These results can be used for standardization, identification, and quality control of phytocomplexes containing these Rhodiola rosea compounds to identify grounds for the mechanisms of the biological actions of MPA and studying its novel properties, taking account of the components identified. The PASS computer program was used for in silico evaluation of the spectra of the antitumor activities of these compounds. Antitumor effects were predicted with high probability for all five phytocomponents; the specific characteristic of the actions of individual compounds suggested that combinations might be used for treating a wide spectrum of malignant neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Ros. Bioterapevt. Zh., 19(4), 22 – 31 (2020).

    Google Scholar 

  2. O. N. Kurennaya, R. V. Karpova, O. A. Bocharova, et al., Genetika, 49(12), 1364 (2013); Russ J. Genetics, 49(12), 1190 (2013).

  3. O. A. Bocharova, V. B. Matveev, R. V. Karpova, et al., Bull. Exp. Biol. Med., 141(5), 616 – 619 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. O. A. Bocharova, M. M. Pozharitskaya, T. L. Chekalina, et al., Bull. Exp. Biol. Med., 138(6), 578 – 583 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. E. V. Bocharov, V. G. Kucheryanu, G. N. Kryzhanovsky, et al., Bull. Exp. Biol. Med., 141(5), 560 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. O. A. Bocharova, M. I. Davydov, A. A. Klimenkov, et al., Bull. Exp. Biol. Med., 148(1), 82 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. E. V. Bocharov, O. A. Bocharova, R. V. Karpova, et al., Ros. Bioterapevt. Zh., 17(2), 69 (2018).

    Google Scholar 

  8. O. P. Sheichenko, O. A. Bocharova, B. A. Krapivkin, et al., Vopr. Biol. Med. Farm. Khim., 10(52) (2012).

    Google Scholar 

  9. O. A. Bocharova, I. V. Kazeev, V. E. Shevchenko, et al., Teor. Osnov. Khim. Tekhnol., 55(6), 780 – 792 (2021).

    Google Scholar 

  10. I. V. Kazeev, O. A. Bocharova, V. E. Shevchenko, et al., Teor. Osnov. Khim. Tekhnol., 54(6), 733 – 737 (2020).

    Google Scholar 

  11. A. S. Saratikov and E. A. Krasnov, Rhodiola Roseaa Valuable Medicinal Herb: (Golden Root), TOnsk University Press, Tomsk (1987).

  12. G. G. Zapesochnaya and V. A. Kurkin, Khim. Prirodn. Soedin., 6, 723 – 727 (1982).

    Google Scholar 

  13. G. G. Zapesochnaya and V. A. Kurkin, Khim. Prirodn. Soedin., 1, 23 – 32 (1983).

    Google Scholar 

  14. V. A. Kurkin, G. G. Zapesochnaya, and A. N. Shchavlinskii, Khim. Prirodn. Soedin., 5, 632 – 636 (1985).

    Google Scholar 

  15. Y. Li, V. Pham, M. Bui, and L. Song, Curr. Pharmacol. Rep., 3(6), 384 – 395 (2017); doi: 101007 / s40495-017-0106-1.

  16. A. Panossian, Ann. NY Acad. Sci., 1401, No. 1, 49 – 64 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Z. L. Liang, X. Y. Zhang, F. Wang, et al., Medicine (Baltimore), 97(39), e11886 (2018); doi: https://doi.org/10.1097/MD0000000000011886.

    Article  Google Scholar 

  18. A. Booker, B. Jalil, D. Frommenwiler, et al., Phytomedicine, 23(7), 754–762 (2016); doi: https://doi.org/10.1016/jphymed201510006.

    Article  CAS  PubMed  Google Scholar 

  19. Y. C. Ma, X. Q. Wang, F. Hou, et al., J. Pharm. Biomed. Anal., 55(5), 908 – 915 (2011); doi: https://doi.org/10.1016/jjpba201103013.

    Article  CAS  PubMed  Google Scholar 

  20. V. A. Kurkin and T. K. Ryazanova, Khim.-Farm. Zh., 55(8), 40 – 44 (2021); Pharm Chem J, 55(8), 793 – 797 (2021).

  21. A. Q. Sun, X. L. Ju, J. Chin, Integr. Med, 27(2), 153 – 160 (2021); doi: https://doi.org/10.1007/s11655-020-3190-8.

  22. L. Yang, Y. Yu, Q. Zhang, et al., Artif. Cells Nanomed. Biotechnol., 47(1), 3500 – 3510 (2019); doi: https://doi.org/10.1080/2169140120191652626.

    Article  CAS  PubMed  Google Scholar 

  23. S. Y. Ding, M. T. Wang, D. F. Dai, et al., Biochem. Biophys. Res. Commun., 527(4), 1057 – 1063 (2020); doi: https://doi.org/10.1016/jbbrc202005066.

    Article  CAS  PubMed  Google Scholar 

  24. M. Ren,W. Xu, T. Xu, Artif. Cells Nanomed. Biotechnol., 47(1), 1014 – 1021 (2019); doi: https://doi.org/10.1080/2169140120191584566.

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Marchev, P. Dimitrova, and I. K. Koycheva, Food Chem. Toxicol., 108 (Part B), 419 – 428 (2017); doi: https://doi.org/10.1016/jfct201702009.

  26. S. K. J. Magani, S. D. Mupparthi, B. P. Gollapalli, et al., Curr. Drug Metab., 21(7), 512 – 524 (2020); doi: https://doi.org/10.2174/1389200221666200610172105.

    Article  CAS  PubMed  Google Scholar 

  27. S. Sun, Q. Tuo, D. Li, et al., Evid. Based Complement Alternat. Med., 2020, 9568647 (2020); doi: https://doi.org/10.1155/2020/9568647.

    Article  PubMed  PubMed Central  Google Scholar 

  28. K. Khanna, K. P. Mishra, L. Ganju, et al., Biomed. Pharmacother., 87, 496 – 502 (2017); doi: https://doi.org/10.1016/jbiopha201612132.

  29. R. Li and J. Chen, Oxid. Med. Cell. Longev., 2019, 9341018 (2019); doi: https://doi.org/10.1155/2019/9341018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. Zhou, K. Chen, Q. Lu, et al., Chem. Biodivers., 17(12), e2000652 (2020); doi: https://doi.org/10.1002/cbdv202000652.

    Article  CAS  PubMed  Google Scholar 

  31. L. Mácsai, Z. L. Datki, D. Csupor, et al., Evid. Based Complement Alternat. Med., 2018, 3690683 (2018); doi: https://doi.org/10.1155/2018/3690683.

    Article  PubMed  PubMed Central  Google Scholar 

  32. E. V. Bocharov, O. A. Bocharova, R. V. Karpova, et al., Ros. Bioterapevt. Zh., 17(2), 69 – 78 (2018).

    Google Scholar 

  33. O. A. Bocharova, R. V. Karpova, and E. V. Bocharov, Bull. Exp. Biol. Med., 159(5), 655 – 657 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. E. V. Bocharov, V. G. Kucheryanu, and G. N. Kryzhanovskii, Bull. Exp. Biol. Med., 141(5), 560 – 563 (2006); doi: https://doi.org/10.1007/s10517-006-0220-2.

    Article  CAS  PubMed  Google Scholar 

  35. E. V. Bocharov, V. G. Kucheryanu and I. A. Ivanova-Smolenskaya, Bull. Exp. Biol. Med., 149(6), 682 – 684 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. E. V. Bocharov, R. V. Karpova, I. V. Kazeev, et al., Pat. Fiziol. Éksperim. Ter., 57(3), 55 – 58 (2013).

    Google Scholar 

  37. R. V. Karpova, E. V. Bocharov, I. V. Kazeev, et al., Pat. Fiziol. Éksperim. Ter., 57(4), 51 – 54 (2013).

    Google Scholar 

  38. O. A. Bocharova, M. I. Davydov, A. A. Klimenkov, et al., Bull. Exp. Biol. Med., 148(1), 82 – 85 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. O. A. Bocharova, R. V. Karpova, V. A. Golubeva, et al., Bull. Exp. Biol. Med., 128(4), 1005 – 1008 (1999).

    Article  Google Scholar 

  40. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Ros. Bioterapevt. Zh., 19(4), 35 – 44 (2020).

    Google Scholar 

  41. A. A. Lagunin, R. K. Goel, D. Y. Gawande, et al., Nat. Prod. Rep., 31(11), 1585 – 1611 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. D. Y. Gawande, D. Druzhilovsky, R. C. Gupta, et al., J. Ethnopharmacol., 202(18), 97 – 102 (2017).

    Article  PubMed  Google Scholar 

  43. A. K. Uéili, A. O. Ponkratova, A. A. Orlova, et al., Khim.- Farm. Zh., 55(3), 22 – 27 (2021); Pharm Chem J., 55(3), 253 – 258 (2021).

Download references

Acknowledgements

This study was partially funded by grants from the Commission for Biomedical Innovations and Technologies, Russian Federation Ministry of Science, and the Basic Long-Term Scientific Research Program of the Russian Federation (2021 – 2030).

Conflict of interests. The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Bocharova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 1, pp. 32 – 38, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharova, O.A., Kazeev, I.V., Shevchenko, V.E. et al. A Potential Method for Standardization of Multiphytoadaptogen: Tandem Mass Spectrometry for Analysis of Biologically Active Substances from Rhodiola rosea. Pharm Chem J 56, 78–84 (2022). https://doi.org/10.1007/s11094-022-02607-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02607-0

Keywords

Navigation