Skip to main content
Log in

Physicochemical Properties and Methods for the Determination of Metformin Hydrochloride (A Review)

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Metformin hydrochloride is widely used to treat diabetes mellitus. This review presents its physical and chemical properties and discusses methods of analysis that allow a quality assessment of metformin hydrochloride both as an individual drug and in combination with other antidiabetic medicines. The most widely used method is HPLC combined with spectrophotometry and other methods of analysis. The review is based on data from foreign and domestic articles and on our research results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Vidal 2019. Vidal’s Handbook. Pharmaceuticals in Russia [in Russian], GEOTAR, Moscow (2019).

  2. Yu. V. Sul’skaya, Ratsion. Farmakoter., No. 3 (48), 52 – 63 (2018).

  3. Regulatory Document LP-004568-061217. Metformin MS. Metformin. Film-coated Tablets, 500 mg, 850 mg and 1000 mg. Replaces No. 1 LP-004568-150618. Replaces No. 2. LP004568-160120. AO Medisorb.

  4. The History of Metformin: 2007 – 50 Years of Use, Ozhirenie Metab., No. 3 58 (2007).

  5. State Pharmacopoeia of the Russian Federation. XIVth Ed., in 4 Vols., Vol. 3, Metformin Hydrochloride, PM.2.1.0137.18, p. 4391.

  6. European Pharmacopoeia (ver. 8.0). Metformin Hydrochloride, European Pharmacopoeia Identification Test C using Silica Gel G TLC Plates.

  7. United State Pharmacopeia and National Formulary (USP34-NF29). Rockville, MD: US Pharmacopeia 2011, pp. 3442 – 3443.

  8. British Pharmacopoeia. London. The Stationery Office / Medicines and Healthcare Products Regulatory Agency (MHRA), London (2011), p. 2983.

  9. Drug Master File open part for Metformin Hydrochloride produced by Weifa AS, Ver. 2012 – 03.

  10. Development and validation of analytical methods for determination of some anti-diabetic drugs in bulk and their pharmaceutical dosage forms, A. H. Patwari, 2014, Chap. 2.

  11. PubChem Database of Chemical Compounds and Mixtures; https: // pubchem.ncbi.nlm.nih.gov / compound / 6918537#section=Chemical-and-Physical-Properties (accessed Nov. 10,2020).

  12. K. R. Patil, T. A. Deshmukh, and V. R. Patil, World J. Pharm. Pharm. Sci., 4(09), 1151 – 1162 (2015).

    CAS  Google Scholar 

  13. N. K. Abood, D. Mahmood, and A. M. Abass, Int. J. Res. Eng. Innovation, 4(2), 91 – 95 (2020); https://doi.org/10.36037/IJREI.2020.4203.

    Article  Google Scholar 

  14. M. T. da Trindade, A. C. Kogawa, and H. R. N. Salgado, Crit. Rev. Anal. Chem., 48(1), 66 – 72 (2018).

    Article  Google Scholar 

  15. E. Prugnard and M. Noel, in: Oral Antidiabetics, J. Kuhlmann (ed.), Walter Puls, (1996), pp. 287 – 304. doi: 10.1007/978-3-662-09127-2.

  16. S. Mondal, R. N. Samajdar, S. Mukherjee, et al., J. Phys. Chem. B, 122(8), 2227 – 2242 (2018).

    Article  CAS  Google Scholar 

  17. B. Hernandez, F. Pfluger, S. G. Kruglik, et al., J. Pharm. Biomed. Anal., 114, 42 – 48 (2015).

    Article  CAS  Google Scholar 

  18. S. Naveed, H. Rehman, F. Qamar, et al., Int. J. Pharm. Sci. Res., 5(10), 714 – 717, (2014).

    CAS  Google Scholar 

  19. F. Tache and M. Albu, Rev. Roum. Chim., 52(6), 603 – 609 (2007).

    CAS  Google Scholar 

  20. G. Kiaczkow and E. Anuszewska, Acta Pol. Pharm., 67(6), 593 – 598 (2010).

    Google Scholar 

  21. T. Sudha, V. Krishna, and V. R. Kumar, Res. Rev.: J. Pharm. Anal., 3(1), 27 – 33, (2014).

    Google Scholar 

  22. E. R. Sartori, W. T. Suarez, et al., Quím. Nova [online], 32(7), 1947 – 1950 (2009).

  23. J. Pyzowski, M. Lenartowicz, A. W. Sobanska, et al., Zh. Prikl. Spektrosk., 84(4), 671 (2017).

    Google Scholar 

  24. H. Ibrahim and M. S. Kamel, Science Direct Working Paper (2002). No. S1574 – 0331(04)70870-X.

  25. F. Farouk, B. A. Moussa, and H. M. El-Said Azzazy, Spectroscopy, 26(4 – 5), 297 – 309 (2011).

  26. S. M. Eid, S. S. Soliman, M. R. Elghobashy, et al., Vib. Spectrosc., 106, 102995 (2020).

    Article  CAS  Google Scholar 

  27. A. Gumieniczek, A. Berecka-Rycerz, T. Mroczek, et al., Molecules, 24(24), 4430 (2019).

    Article  CAS  Google Scholar 

  28. R. I. El-Bagary, E. F. Elkady, and B. M. Ayoub, Int. J. Biomed. Sci., 9(1) 41 – 47 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. M. F. Abdel-Ghany, O. Abdel-Aziz, M. F. Ayad, et al., Spectrochim. Acta, Part A, 125, 175 – 182 (2014). doi: https://doi.org/10.1016/j.saa.2014.01.055.

    Article  CAS  Google Scholar 

  30. G. Mubeen and K. Noor, Indian J. Pharm. Sci., 1, 100 – 102 (2009).

    Article  Google Scholar 

  31. G. Mubeen, K. Noor, V. M. N. Al-Ameen, et al., Int. J. ChemTech Res., 2(2), 1186 – 1187 (2010).

    CAS  Google Scholar 

  32. A. T. Barden, B. L. Piccoli, N. M. Volpato, et al., Drug Anal. Res., 2(1), 46 – 53 (2018).

    Article  Google Scholar 

  33. M. A. Mohammad, E. F. Elkady, and M. A. Foaud, Eur. J. Chem., 3(2), 152 – 155 (2012).

    Article  CAS  Google Scholar 

  34. N. S. Abdelwahab, M. M. Abdelrahman, J. M. Boshra, et al., J. Planar Chromatogr., 32(4), 309 – 316, (2019).

    Article  CAS  Google Scholar 

  35. F. Al-Rimawi, Talanta, 79(5), 1368 – 1371, (2009).

    Article  CAS  Google Scholar 

  36. HPLC Analysis of Metformin and Related Impurities Cyanoguanidine and Melamine on SeQuant(R) ZIC-HILIC; https://www.sigmaaldrich.com/technical-documents/articles/analytical-applications / hplc / hplc-analysis-of-metformin-andrelated-impurities-cyanoguanidine-and-melamine-g1007265.html#newMaterials ().

  37. S. B. Baokar, S. V. Mulgund, and N. S. Ranpise, Res. J. Pharm. Dosage Forms Technol., 5(2), 95 – 98 (2013).

    Google Scholar 

  38. S. Lohit. Ch, S. Pattanayak, and T. R. Rao, Am. J. PharmTech Res., 4(5), 138 – 145, (2014).

  39. N. Satheeshkumar M. Pradeepkumar S. Shanthikumar, et al., Drug Res., 64(3), 124 – 129 (2014).

    CAS  Google Scholar 

  40. H. A. Merey, N. K. Ramadan, S. S. Diab, and A. A. Moustafa, Bull. Fac. Pharm. (Cairo Univ.), 55(2), 311 – 317 (2017).

    Google Scholar 

  41. R. G. Mansurova and N. V. Z. A. Gazizova, in: Current Issues of Judicial Medicine and Rights, Kazan (2010), No. 1, 282 pp.

  42. R. I. El-Bagary, E. F. Elkady, and B. M. Ayoub, Int. J. Biomed. Sci., 7(3), 201 – 208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Gedawy, H. Al-Salami, and C. R. Dass, J. Food Drug Anal., 27, 315 – 322 (2019).

    Article  CAS  Google Scholar 

  44. K. S. Lakshmi, T. Rajesh, and S. Sharma, Int. J. Pharm. Pharm. Sci., 1(2), 162 (2009).

    CAS  Google Scholar 

  45. M. S. Arayne, N. Sultana, and M. H. Zuberi, Pak. J. Pharm. Sci., 19(3) 231 – 235 (2006).

    CAS  PubMed  Google Scholar 

  46. I. O. A. Reid, Pharma Innovation, 6(5), 157 – 160 (2017).

    Google Scholar 

  47. S. A. Kumar, M. Debnath, and J. V. L. N. Seshagiri Rao, Pharm. Sin., 4(4), 47 – 61 (2013).

    CAS  Google Scholar 

  48. C. P. Uber, F. Lada, D. Pontes, et al., Int. J. Pharm. Pharm. Sci., 6(11), 203 – 207 (2014).

    CAS  Google Scholar 

  49. R. Q. Gabr, R. S. Padwal, and D. R. Brocks, J. Pharm. Pharm. Sci., 13(4), 486 – 494 (2010).

    Article  CAS  Google Scholar 

  50. Y.-J. Kang, H.-C. Jeong, T.-E. Kim, et al., Molecules, 25, 4625 (2020).

    Article  CAS  Google Scholar 

  51. I. I. Hamdan, A. K. Bani Jaber, and A. M. Abushoffa, J. Pharm. Biomed. Anal., 53(5), 15 (2010).

    Article  Google Scholar 

  52. J. Z. Song, H. F. Chen, S. J. Tian, et al., J. Chromatogr. B. Biomed. Sci. Appl., 708(1 – 2), 277 – 283, (1998).

  53. H. Maher, A. E. Abdelrahman, N. Alzoman, et al., J. Liq. Chromatogr. Relat. Technol., 42(4), 1 – 11 (2019).

    Google Scholar 

  54. E. Ucakturk, Anal. Methods, 5(18), 4723 – 4730 (2013).

    Article  Google Scholar 

  55. S. S. Havele and S. R. Dhaneshwar, J. Liq. Chromatogr. Relat. Technol., 34(12), 966 – 980 (2011). DOI: https://doi.org/10.1080/10826076.2011.557465.

    Article  CAS  Google Scholar 

  56. E. El-Kimary, D. Hamdy, S. S. Mourad, et al., J. Chromatogr. Sci., 54(1), 79 – 87 (2015).

    PubMed  Google Scholar 

  57. C. Goedecke, I. Fettig, C. Piechotta, et al., Anal. Methods, 9(10), 1580 – 1584, (2017).

    Article  CAS  Google Scholar 

  58. K. Amal, S. A. Nessreen, E. A. Abdelaleem, et al., J. Pharm. Pharm. Sci., 5(3), 1 – 8 (2018).

    Google Scholar 

  59. M. A. Mohamed, A. K. Attia, and W. Salem, Acta Chim. Slov., 62(3), 588 – 594, (2015).

    Google Scholar 

  60. M. B. Gholivand and L. Mohammadi-Behzad, Anal. Biochem., 438(1), 53 – 60 (2013). doi: https://doi.org/10.1016/j.ab.2013.03.019.

    Article  CAS  PubMed  Google Scholar 

  61. K. N. Toraev, L. V. Evseeva, and S. N. Gubar’, Upr. Ekon. Zabezpech. Yakosti Farm., 6(44), 18 – 24 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Sabirzyanov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 10, pp. 59 – 64, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakova, E.B., Sabirzyanov, D.R., Prozorova, N.A. et al. Physicochemical Properties and Methods for the Determination of Metformin Hydrochloride (A Review). Pharm Chem J 55, 1119–1125 (2022). https://doi.org/10.1007/s11094-021-02546-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02546-2

Keywords

Navigation