Skip to main content

Advertisement

Log in

Inhibitors of Sortases of Gram-Positive Bacteria and their Role in the Treatment of Infectious Diseases (Review)

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The functions of sortase bacterial enzymes and their surface-protein substrates are reviewed. Their role in the pathogenesis of infectious diseases such as pneumonia, septic endocarditis, septic arthritis, mastitis, and cutaneous and gastrointestinal infections are discussed. The importance of sortases for the pathogenesis of the aforementioned diseases has been studied in animal models. Well-known and potential natural and synthetic sortase inhibitors are considered possible compounds for the treatment of these infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cascioferro, M. Totsika, and D. Schillaci, Microb. Pathog., 77, 105 – 112 (2014); https://doi.org/10.1016/j.micpath.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  2. S.-C. Wu, F. Liu, K. Zhu, et al., J. Agric. Food Chem., 67(48), 13195 – 13211 (2019); https://doi.org/10.1021/acs.jafc.9b05595.

    Article  CAS  PubMed  Google Scholar 

  3. A. W. Jacobitz, M. D. Kattke, J.Wereszczynski, et al., Adv. Protein Chem. Struct. Biol., 109, 223 – 264 (2017); https://doi.org/10.1016/bs.apcsb.2017.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Ton-That and O. Schneewind, Mol. Microbiol., 50(4), 1429 – 1438 (2003); https://doi.org/10.1046/j.1365-2958.2003.03782.x.

    Article  CAS  PubMed  Google Scholar 

  5. B. Khare and S. V. L. Narayana, Protein Sci., 8, 1458 – 1473 (2017); https://doi.org/10.1002/pro.3191.

    Article  CAS  Google Scholar 

  6. G. K. Paterson and T. J. Mitchell, Trends Microbiol., 12(2), 89 – 95 (2004); https://doi.org/10.1016/j.tim.2003.12.007.

    Article  CAS  PubMed  Google Scholar 

  7. J. LeMieux, D. L. Hava, A. Basset, et al., Infect. Immun., 74(4), 2453 – 2456 (2006); https://doi.org/10.1128/IAI.74.4.2453-2456.2006.

    Article  CAS  Google Scholar 

  8. B. S. Belov, Effekt. Farmakoter., 15(40), 46 – 52 (2019); https://doi.org/10.33978/2307-3586-2019-15-40-46-52.

    Article  Google Scholar 

  9. M. W. Ha, S. W. Yi, and S.-M. Paek, Antibiotics (Basel), 9(10), 706 (2020); https://doi.org/10.3390/antibiotics9100706.

    Article  CAS  Google Scholar 

  10. O. P. Kerro-Dego, T. Prysliak, A. A. Potter, et al., Vet. Immunol. Immunopathol., 113(1–2), 125 – 138 (2006).

    Article  CAS  Google Scholar 

  11. A. Tarkowski, M. Mokarewa, L. V Collins, et al., FEMS Microbiol. Lett., 217(2), 125 – 132 (2002); https://doi.org/10.1111/j.1574-6968.2002.tb11466.x.

    Article  CAS  PubMed  Google Scholar 

  12. J. Kwiecinski, T. Jin, and E. Josefsson, APMIS (Acta Pathol. Microbiol. Immunol. Scand.), 122(12), 1240 – 1250 (2014); https://doi.org/10.1111/apm.12295.

    Article  CAS  Google Scholar 

  13. N. Suree, C. K. Liew, V. A. Villareal, et al., J. Biol. Chem., 284(36), 24465 – 24477 (2009); https://doi.org/10.1074/jbc.M109.022624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. F. Chen, B. Liu, D. Wang, et al., FEMS Microbiol. Lett., 351(1), 95 – 103 (2014); https://doi.org/10.1111/1574-6968.12354.

    Article  CAS  PubMed  Google Scholar 

  15. J. Wang, H. Li, J. Pan, et al., Front Microbiol., 9, 245 (2018); https://doi.org/10.3389/fmicb.2018.00245.

  16. I.-M. Jonsson, S. K. Mazmanian, O. Schneewind, et al., J. Infect. Dis., 185(10), 1417 – 1424 (2002); https://doi.org/10.1086/340503.

    Article  CAS  PubMed  Google Scholar 

  17. M. Cazzola, M. G. Matera, and C. P. Page, Trends Pharmacol. Sci., 24(6), 306 – 314 (2003); https://doi.org/10.1016/S0165-6147(03)00129-9.

    Article  CAS  PubMed  Google Scholar 

  18. D. Mu, Y. Luan, L. Wang, et al., Emerging Microbes Infect., 9(1), 169 – 179 (2020); https://doi.org/10.1080/22221751.2020.1711817.

    Article  CAS  Google Scholar 

  19. T. Bremell, A. Abdelnour, and A. Tarkowski, Infect. Immun., 60, 2976 – 2985 (1992).

    Article  CAS  Google Scholar 

  20. M. Verdrengh and A. Tarkowski, Infect. Immun., 65, 2517 – 2521 (1997).

    Article  CAS  Google Scholar 

  21. L. Jiang, J. Wang, J. Ju, and J. Dai, Eur. J. Pharmacol., 883, 173352 (2020); https://doi.org/10.1016/j.ejphar.2020.173352; Epub 2020 Jul 6. PMID: 32645333.

  22. V. I. Ulanova, V. I. Mazurov, and V. A. Zinzerling, Klin. Med., 98(2), 115 – 121 (2020); https://doi.org/10.30629/0023-2149-2020-98-2-115-121.

    Article  Google Scholar 

  23. L. Liesenborghs, S. Meyers, M. Lox, et al., Eur. Heart J., 40(39), 3248 – 3259 (2019); https://doi.org/10.1093/eurheartj/ehz175; PMID: 30945735.

  24. N. I. Gabrielyan, E. M. Gorskaya, and O. M. Tsirul’nikova, Vestn. Transplantol. Iskusstv. Organov, 17(2), 64 – 69 (2015); https://doi.org/10.15825/1995-1191-2015-2-64-69.

    Article  Google Scholar 

  25. A. J. Roberts and M. Wiedmann, Cell. Mol. Life Sci., 60(5), 904 – 918 (2003); https://doi.org/10.1007/s00018-003-2225-6.

    Article  CAS  PubMed  Google Scholar 

  26. L. I. Banla, N. H. Salzman, and C. J. Kristich, Curr. Opin. Microbiol., 47, 26 – 31 (2019); https://doi.org/10.1016/j.mib.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  27. L. I. Banla, A. M. Pickrum, M. Hayward, et al., Infect. Immun., 87(5), e00853 – 18 (2019); https://doi.org/10.1128/IAI.00853-18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. C. Sabet, M. Lecuit, D. Cabanes, et al., Infect. Immun., 73(10), 6912 – 6922 (2005); https://doi.org/10.1128/IAI.73.10.6912-6922.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. N. Tapon and A. Hall, Curr. Opin. Cell Biol., 9(1), 86 – 92 (1997); https://doi.org/10.1016/s0955-0674(97)80156-1.

    Article  CAS  PubMed  Google Scholar 

  30. J. A. Kirk, O. Banerji, and R. P. Fagan, Microb. Biotechnol., 10(1), 76 – 90 (2017); https://doi.org/10.1111/1751-7915.12372.

    Article  CAS  PubMed  Google Scholar 

  31. I. M. Gruber, et al., Epidemiol. Vaktsinoprofilaktika, No. 3 (88), 72 – 82 (2016); https://doi.org/10.31631/2073-3046-2016-15-3-72-82.

  32. A. E. Abaturov and T. A. Kryuchko, Zdorov’e Rebenka, 12(4), 491 – 497 (2017); https://doi.org/10.22141/2224-0551.12.4.2017.107631.

    Article  Google Scholar 

  33. G. Nitulescu, A. Zanfirescu, O. T. Olaru, et al., Molecules, 21(11), 1591 (2016); https://doi.org/10.3390/molecules21111591.

    Article  CAS  PubMed Central  Google Scholar 

  34. Y. Guo, S. Cai, G. Gu, et al., RSC Adv., 5(62), 49880 – 49889 (2015); https://doi.org/10.1039/c5ra07568h.

    Article  CAS  Google Scholar 

  35. N. Suree, S. W. Yi, W. Thieu, et al., Bioorg. Med. Chem., 17(20), 7174 – 7185 (2009); https://doi.org/10.1016/j.bmc.2009.08.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. V. Kudryavtsev, M. L. Bentley, and D. G. McCafferty, Bioorg. Med. Chem., 17(7), 2886 – 2893 (2009); https://doi.org/10.1016/j.bmc.2009.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. F. Chen, F. Xie, B. Yang, et al., PLoS One, 12(3), e0173767 (2017); https://doi.org/10.1371/journal.pone.0173767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. K.-B. Oh, M.-N. Oh, J.-G. Kim, et al., Appl. Microbiol. Biotechnol., 70(1), 102 – 106 (2006); https://doi.org/10.1007/s00253-005-0040-8.

    Article  CAS  PubMed  Google Scholar 

  39. J. Bae, J.-E. Jeon, Y.-J. Lee, et al., J. Nat. Prod., 74(8), 1805 – 1811 (2011); https://doi.org/10.1021/np200492k.

    Article  CAS  PubMed  Google Scholar 

  40. K. H. Jang, S.-C. Chung, J. Shin, et al., Bioorg. Med. Chem. Lett., 17(19), 5366 – 5369 (2007); https://doi.org/10.1016/j.bmcl.2007.08.007.

    Article  CAS  PubMed  Google Scholar 

  41. I. Oh,W.-Y. Yang, S.-C. Chung, et al., Arch. Pharm. Res., 34(2), 217 – 222 (2011); https://doi.org/10.1007/s12272-011-0206-0.

    Article  CAS  PubMed  Google Scholar 

  42. K.-B. Oh, S.-H. Kim, J. Lee, et al., J. Med. Chem., 47, 2418 – 2421 (2004).

    Article  CAS  Google Scholar 

  43. A. W. Maresso, R. Wu, J. W. Kern, et al., J. Biol. Chem., 282, 23129 – 23139 (2007).

    Article  CAS  Google Scholar 

  44. Y.-J. Lee, Y.-R. Han, W. Park, et al., Bioorg. Med. Chem. Lett., 20, 6882 – 6885 (2010).

    Article  CAS  Google Scholar 

  45. B. C. Chenna, J. R. King, B. A. Shinkre, et al., Eur. J. Med. Chem., 45, 3752 – 3761 (2010).

    Article  CAS  Google Scholar 

  46. G. Wang, Y. Gao, H. Wang, et al., Front. Cell. Infect. Microbiol., 8, 418 (2018); https://doi.org/10.3389/fcimb.2018.00418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the Russian Science Foundation (Project No. 20-15-00258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kudryavtsev.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 8, pp. 3 – 9, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, K.V., Fedotcheva, T.A. & Shimanovsky, N.L. Inhibitors of Sortases of Gram-Positive Bacteria and their Role in the Treatment of Infectious Diseases (Review). Pharm Chem J 55, 751–756 (2021). https://doi.org/10.1007/s11094-021-02488-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02488-9

Keywords

Navigation