Skip to main content
Log in

Neuropharmacological Analysis of the Antidepressant Action of 2-[3-Methyl-7-(Thietan-3-Yl)-1-Ethylxanth-8-YLTHIO] Acetic Acid Hydrazide

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A compound with low toxicity and pronounced antidepressant activity upon single and long-term administration was discovered by us earlier among a series of new thietanylxanthine derivatives. The present article focused on the central mechanisms of action of 2-[3-methyl-7-(thietan-3-yl)-1-ethylxanth-7-ylthio]acetic acid hydrazide (laboratory code M-20). Neuropharmacological analysis showed that M-20 at doses of 0.97 and 12 mg/kg exhibited effects indicative of possible stimulatory action on adrenergic and inhibitory action on GABA-ergic neurotransmission in brains of outbred white mice. M-20 at a dose of 12 mg/kg produced an activating effect on the serotoninergic system in addition to action on the adrenergic and GABA-ergic systems and altered the activity of the cholinergic system. M-20 at doses of 0.97 and 12 mg/kg did not alter the effects of haloperidol and L-DOPA, which indicated that it did not influence dopaminergic neurotransmission and MAO-inhibiting activity. The results indicated that M-20 was promising (at the low dose) for use with depression associated with decreased activity of the serotoninergic system without side effects on the dopaminergic and cholinergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. A. Golovacheva and V. A. Parfenov, Med. Sovet, No. 5, 55 – 60 (2015); doi: https://doi.org/10.21518/2079-701X-2015-5-55-61.

  2. Depression and Other Common Mental Disorders; Global Health Estimates, World Health Organization, Geneva (2017).

    Google Scholar 

  3. K. S. Raevskii, Psikhiatr. Psikhofarmakoter., 3(5), 162 – 166 (2001).

    Google Scholar 

  4. L. A. Levchuk, S. A. Ivanova, E. V. Gutkevich, et al., Sib. Vestn. Psikhiatr. Narkol., 69(6), 13 – 16 (2011).

    Google Scholar 

  5. N. L. Shimanovskii, M. A. Epinetov, and M. Ya. Mel?nikov, Molecular and Nanopharmacology [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  6. G. G. Davlyatova and L. A. Valeeva, Zdorov. Obraz. XXI Veke, 18(7), 132 – 135 (2016).

    Google Scholar 

  7. L. A. Valeeva, G. G. Davlyatova, Yu. V. Shabalina, et al., Khim.-farm. Zh., 50(6), 8 – 11 (2016); doi: https://doi.org/10.30906/0023-1134-2016-50-6-8-11.

    Article  Google Scholar 

  8. F. A. Khaliullin, I. L. Nikitina, E. E. Klen, et al., Khim.-farm. Zh., 53(12), 8 – 15 (2019); doi: https://doi.org/10.30906/0023-1134-2019-53-12-8-15.

    Article  Google Scholar 

  9. Yu. V. Shabalina, F. A. Khaliullin, I. L. Nikitina, et al., Khim.-farm. Zh., 53(11), 21 – 24 (2019); doi: https://doi.org/10.30906/0023-1134-2019-53-11-21-24.

    Article  Google Scholar 

  10. D. Z. Murataev, Yu. V. Shabalina, and F. A. Khaliullin, Bashkir. Khim. Zh., 19(1), 220 – 222 (2012).

    CAS  Google Scholar 

  11. A. N. Mironov, Handbook for Preclinical Drug Trials [in Russian], Grif i K, Moscow (2012).

    Google Scholar 

  12. R. U. Khabriev, Handbook for Experimental (Preclinical) Studies of New Drugs [in Russian], Meditsina, Moscow (2005).

    Google Scholar 

  13. S. Glantz, Primer of Biostatistics, 4th Ed., McGraw-Hill Inc., New York (1997), 473 pp.

    Google Scholar 

  14. A. Bielenica, E. Kedzierska, M. Kolinski, et al., Eur. J. Med. Chem., 116, 173 – 186 (2016); doi: https://doi.org/10.1016/j.ejmech.2016.03.073.

    Article  CAS  PubMed  Google Scholar 

  15. J. Arnt, J. Hyttel, and J. J. Larsen, Acta Pharmacol. Toxicol., 55(5), 363 – 372 (1984); doi: https://doi.org/10.1111/j.1600-0773.1984.tb01996.x.

    Article  CAS  Google Scholar 

  16. F. García-Oscos, O. Torres-Ramírez, L. Dinh, et al., Synapse, 69(3), 115 – 127 (2015); https://doi.org/10.1002/syn.21794.

    Article  CAS  PubMed  Google Scholar 

  17. S. Koyama, C. Kubo, J.-S. Rhee, et al., J. Physiol., 518(2), 525 – 538 (1999); doi: https://doi.org/10.1111/j.1469-7793.1999.0525p.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. O. Korolev, T. S. Kalinina, A. V. Volkova, et al., Eksp. Klin. Farmakol., 77(16), 3 – 7 (2014).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Valeeva.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 5, pp. 7 – 10, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeeva, L.A., Davlyatova, G.G. & Shimanovskii, N.L. Neuropharmacological Analysis of the Antidepressant Action of 2-[3-Methyl-7-(Thietan-3-Yl)-1-Ethylxanth-8-YLTHIO] Acetic Acid Hydrazide. Pharm Chem J 54, 435–438 (2020). https://doi.org/10.1007/s11094-020-02218-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02218-7

Keywords

Navigation