Skip to main content
Log in

Effects of Aminoadamantane Derivatives on Morphine-Induced Analgesia in Mice

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The effects of low-affinity NMDA-receptor antagonists amantadine (1-aminoadamantane hydrochloride) and hemantane [N-(2-adamantyl)hexamethyleneimine hydrochloride] on morphine-induced analgesia in C57Bl/6 mice were studied. Amantadine (10 and 20 mg/kg, i.p.) per se did not affect the latent period of the response in the hot-plate test while hemantane (10 and 20 mg/kg, i.p.) increased dose-dependently pain thresholds 180 and 240 min after administration. Morphine (20 mg/kg, s.c.) showed a time—effect dependence (30 – 120 min). The aminoadamantanes were administered 90 min after the opioid to assess their effects on morphine-induced antinociception. The responses of the animals were recorded for the next 2.5 h. The aminoadamantanes potentiated and extended the analgesic activity of morphine in the order of efficacy amantadine < hemantane. The results indicated that the aminoadamantanes had different capabilities to cause delayed analgesia and modulated opioid antinociceptive activity at the supraspinal level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Suzuki, Curr. Opin. Anaesthesiol., 22(5), 618 – 622 (2009).

    Article  Google Scholar 

  2. G. Hubsher, M. Haider, and M. S. Okun, Neurology, 78(14), 1096 – 1099 (2012).

    Article  CAS  Google Scholar 

  3. D. G. Snijdelaar, G. Koren, and G. Katz, Anesthesiology, 100(1), 134 – 141 (2004).

    Article  CAS  Google Scholar 

  4. B. Bujak-Gizycka, K. Kacka, M. Suski, et al., Pain Med., 13(3), 459 – 465 (2012).

    Article  Google Scholar 

  5. J. Yazdani, Pain Med., 6(3), e35900 (2016).

    Google Scholar 

  6. E. Kozela, W. Danysz, and P. Popik, Eur. J. Pharmacol., 423(1), 17 – 26 (2001).

    Article  CAS  Google Scholar 

  7. D. G. Snijdelaar, C. M. van Rijn, P. Vinken, and T. F. Meert, Pain, 119(1 – 3), 159 – 167 (2005).

  8. D. Malec, M. Mandryk, and S. Fidecka, Pharmacol. Rep., 60(2), 149 – 155 (2008).

    PubMed  CAS  Google Scholar 

  9. Y. Chen, M. Evola, and A. M. Young, Psychopharmacology, 225(1), 187 – 199 (2013).

    Article  CAS  Google Scholar 

  10. E. Kozela, A. Pilc, and P. Popik, Psychopharmacology, 165(3), 245 – 251 (2003).

    Article  CAS  Google Scholar 

  11. J. E. Grisel, S. Allen, K. V. Nemmani, et al., Pharmacol. Biochem. Behav., 81, 131 – 138 (2005).

    Article  CAS  Google Scholar 

  12. I. V. Belozertseva, O. A. Dravolina, O. N. Neznanova, et al., Eur. J. Pharmacol., 396, 77 – 83 (2000).

    Article  CAS  Google Scholar 

  13. E. A. Val’dman, Author’s Abstract of a Doctoral Dissertation in Medical Sciences, Moscow (2001).

  14. A. V. Nepoklonov, I. G. Kapitsa, and E. A. Ivanova, Eksp. Klin. Farmakol., 75(11), 3 – 6 (2012).

    PubMed  CAS  Google Scholar 

  15. E. A. Ivanova, I. G. Kapitsa, E. A. Val’dman, and T. A. Voronina, Byull. Eksp. Biol. Med., 159(3), 362 – 365 (2015).

    Article  CAS  Google Scholar 

  16. E. V. Katunina, A. V. Petrukhova, G. N. Avakyan, et al., Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 108(6), 24 – 27 (2008).

  17. E. A. Ivanova, I. G. Kapitsa, A. V. Nepoklonov, et al., Khim.-farm. Zh., 47(10), 12 – 15 (2013).

  18. M. V. Elshanskaya, A. I. Sobolevskii, E. A. Val’dman, and B. I. Khodorov, Eksp. Klin. Farmakol., 64(1), 18 – 21 (2001).

    CAS  Google Scholar 

  19. S. S. O’Sullivan, D. R. Williams, D. A. Gallagher, et al., Mov. Disord., 23, 101 – 106 (2008).

    Article  Google Scholar 

  20. A. Q. Rana, A. Kabir, M. Jesudasan, et al., Clin. Neurol. Neurosurg., 115(11), 2313 – 2317 (2013).

    Article  Google Scholar 

  21. I. O. Medvedev, A. A. Malyshkin, I. V. Belozertseva, et al., Neuropharmacology, 47(2), 175 – 183 (2004).

    Article  CAS  Google Scholar 

  22. K. E. Redwine and K. A. Trujillo, Pharmacol. Biochem. Behav., 76(2), 361 – 372 (2003).

    Article  CAS  Google Scholar 

  23. I. A. Zimin, I. O. Logvinov, T. A. Antipova, and G. I. Kovalev, Eksp. Klin. Farmakol., 74(1), 11 – 14 (2011).

    PubMed  CAS  Google Scholar 

  24. I. O. Logvinov, T. A. Antipova, A. V. Nepoklonov, and E. A. Val’dman, Eksp. Klin. Farmakol., 79(1), 12 – 14 (2016).

    PubMed  CAS  Google Scholar 

  25. M. Suski, B. Bujak-Gizycka, J. Madej, et al., Folia Med. Cracov., 49(3 – 4), 111 – 121 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kolik.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 4, pp. 15 – 19, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolik, L.G., Nadorova, A.V., Chernyakova, I.V. et al. Effects of Aminoadamantane Derivatives on Morphine-Induced Analgesia in Mice. Pharm Chem J 54, 340–344 (2020). https://doi.org/10.1007/s11094-020-02202-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02202-1

Keywords

Navigation