Skip to main content
Log in

Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Lysozyme loaded niosomes containing various molar ratios of two kinds of surfactants were prepared and the properties of these niosomal formulations were studied. The results revealed that the size of niosomes varied between 240.06 ± 32.41 and 895.2 ± 20.84 nm. Formulations with the lowest size and no precipitation had entrapment efficiencies ranging from 60.644 ± 3.310 to 66.333 ± 1.98%. Their controlled release profiles after 48 h were 15.67, 20.67 and 31.50%. After 2 months, the most stable formulation in terms of size, PDI, zeta potential, and entrapment efficiency was used to study the secondary structures of lysozyme in niosomal and free forms. Lysozyme loaded niosome and lysozyme adsorbed on the surface of niosome fell into one category in terms of the formation of α-helix,β -sheet, and turn structures. This study suggests that niosomes could be a promising delivery system for lysozyme with prolonged release profiles, which can be used in pharmaceutical and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Manosroi, W. Lohcharoenkal, F. Gotz, et al., J. Pharm. Sci., 100, 1525 (2011).

    Article  CAS  Google Scholar 

  2. S. Moghassemi, A. Hadjizadeh, A. Hakamivala, and K. Omidfar, AAPS PharmSciTech, 18, 34 (2017).

    Article  CAS  Google Scholar 

  3. V. Akbari, D. Abedi, A. Pardakhty, and H. Sadeghi-Aliabadi, Avicenna J. Med. Biotechnol., 7, 69 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. A. Manosroi, P. Khanrin, R. G. Werner, et al., J. Microencaps., 27, 272 (2010).

    Article  CAS  Google Scholar 

  5. A. Pardakhty, J. Varshosaz, and A. Rouholamini, Int. J. Pharm. (Amsterdam, Neth.), 328, 130 (2007).

  6. L. Tavano, R. Muzzalupo, L. Mauro, et al., Langmuir, 29, 12638 (2013).

    Article  CAS  Google Scholar 

  7. C.-O. Rentel, J. Bouwstra, B. Naisbett, and H. Junginger, Int. J. Pharm. (Amsterdam, Neth.), 186, 161 (1999).

  8. S. M. Niemiec, C. Ramachandran, and N. Weiner, Pharm. Res., 12, 1184 (1995).

    Article  CAS  Google Scholar 

  9. A. Manosroi, W. Lohcharoenkal, F. Gotz, et al., J. Biomed. Nanotechnol., 7, 366 (2011).

    Article  CAS  Google Scholar 

  10. J. Brewer and J. Alexander, Immunology, 75, 570 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Murdan, G. Gregoriadis, and A. T. Florence, Eur. J. Pharm. Sci., 8, 177 (1999).

    Article  CAS  Google Scholar 

  12. S.-I. Park and S. M. Yoe, Animal Cells Systems, 16, 455 (2012).

    Article  CAS  Google Scholar 

  13. L. Callewaert and C. W. Michiels, J. Biosci., 35, 127 (2010).

    Article  CAS  Google Scholar 

  14. O. S. A. Abed, C. Chaw, L. Williams, and A. A. Elkordy, Sci. Rep., 8, 13158 (2018).

    Article  Google Scholar 

  15. H. Yoshida, C.-M. Lehr, W. Kok, et al., J. Control. Release, 21, 145 (1992).

    Article  CAS  Google Scholar 

  16. R. Rochdy Haj-Ahmad, A. Ali Elkordy, and C. Shu Chaw, Curr. Drug Deliv., 12, 628 (2015).

    Article  Google Scholar 

  17. The HLB System: a Time-Saving Guide to Emulsifier Selection, ICI Americas Inc. (1984).

    Google Scholar 

  18. V. B. Junyaprasert, P. Singhsa, J. Suksiriworapong, and D. Chantasart, Int. J. Pharm. (Amsterdam, Neth.), 423, 303 (2012).

  19. N. Bharti, S. Loona, and M. Khan, Int. J. Pharm. Sci. Rev. Res., 12, 67 (2012).

    CAS  Google Scholar 

  20. S. Taymouri and J. Varshosaz, Adv. Biomed. Res., 5, 48 (2016).

    Article  Google Scholar 

  21. M. Hope, M. Bally, L. Mayer, et al., Chem. Phys. Lipids, 40, 89 (2016).

    Article  Google Scholar 

  22. M. M. El-Sayed, A. K. Hussein, H. A. Sarhan, and H. F. Mansour, Drug Dev. Ind. Pharm., 43, 902 (2017).

    Article  CAS  Google Scholar 

  23. N. J. Kruger, The Bradford method for protein quantitation, in: The Protein Protocols Handbook, Springer (2002), p. 15.

  24. D. Charnvanich, N. Vardhanabhuti, and P. Kulvanich, AAPS PharmSciTech, 11, 832 (2010).

    Article  CAS  Google Scholar 

  25. A. Manosroi, P. Wongtrakul, J. Manosroi, et al., Colloids Surf. B, 30, 129 (2003).

    Article  CAS  Google Scholar 

  26. C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton, Biophys. J., 72, 1264 (1997).

    Article  CAS  Google Scholar 

  27. P. Balakrishnan, S. Shanmugam,W. S. Lee, et al., Int. J. Pharm. (Amsterdam, Neth.), 377, 1 (2009).

  28. C. S. Chaw and K. Y. Ah Kim, Pharmaceutical development and technology 2013, 18, 667.

  29. T. Yoshioka, B. Sternberg, and A. T. Florence, Int. J. Pharm. (Amsterdam, Neth.),105, 1 (1994).

  30. S. Moghassemi, E. Parnian, A. Hakamivala, et al., Mater. Sci. Eng. C, 46, 333 (2015).

    Article  CAS  Google Scholar 

  31. A. Y. Waddad, S. Abbad, F. Yu, et al., Int. J. Pharm. (Amsterdam, Neth.), 456, 446 (2013).

  32. S. McLaughlin, G. Szabo, and G. Eisenman, J. Gen. Pphysiol., 58, 667 (1971).

    Article  CAS  Google Scholar 

  33. A. Manosroi and K. Bauer, Drug Dev. Ind. Pharm., 15, 2531 (1989).

    Article  CAS  Google Scholar 

  34. M. Raslan, J. Life Med., 1, 15 (2013).

    Article  CAS  Google Scholar 

  35. M. Mokhtar, O. A. Sammour, M. A. Hammad, and N. A. Megrab, Int. J. Pharm. (Amsterdam, Neth.)., 361, 104 (2008).

  36. J. Varshosaz, A. Pardakhty, V.-I. Hajhashemi, and A. R. Najafabadi, Drug Deliv., 10, 251 (2003).

    Article  CAS  Google Scholar 

  37. H. S. Barakat, I. A. Darwish, L. K. El-Khordagui, and N. M. Khalafallah, Drug Dev. Ind. Pharm., 35, 631 (2009).

    Article  CAS  Google Scholar 

  38. A. L. Weiner, Adv. Drug Deliv. Rev., 3, 307 (1989).

    Article  CAS  Google Scholar 

  39. K. Ruckmani and V. Sankar, AAPS PharmSciTech, 11, 1119 (2010).

    Article  CAS  Google Scholar 

  40. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm., 67, 217 (2010).

    CAS  PubMed  Google Scholar 

  41. S. Kamboj, V. Saini, and S. Bala, Sci. World J., 2014, 1 (2014).

    Article  Google Scholar 

  42. I. F. Uchegbu and S. P. Vyas, Int. J. Pharm. (Amsterdam, Neth.)., 172, 33 (1998).

  43. A. Balasubramaniam, V. Anil Kumar, and K. Sadasivan Pillai, Drug Dev. Ind. Ppharm., 28, 1181 (2002).

    Article  CAS  Google Scholar 

  44. M. Lawrence, S. Chauhan, S. Lawrence, and D. Barlow, STP Pharma Sci., 6, 49 (1996).

    Google Scholar 

  45. M. Seras-Cansell, M. Ollivon, and S. Lesieur, STP Pharma Sci., 6, 12 (1996).

    Google Scholar 

  46. E. Moazeni, K. Gilani, F. Sotoudegan, A. Pardakhty, et al., J. Microencaps., 27, 618 (2010).

    Article  CAS  Google Scholar 

  47. A. Pardakhty, E. Moazeni, J. Varshosaz, et al., DARU J. Pharm. Sci., 19, 404 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by a scholarship of education center of the Pasteur Institute of Iran to SS, PhD student.

Conflict of Interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haleh Bakhshandeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S., Ehsani, P., Cohan, R.A. et al. Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System. Pharm Chem J 53, 921–930 (2020). https://doi.org/10.1007/s11094-020-02100-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02100-6

Keywords

Navigation