Skip to main content
Log in

Molecular Dynamics Simulation Approach to Understand Lamivudine Resistance in Hepatitis B Virus Polymerase

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Hepatitis B virus (HBV) is a global threat that killed many human lives. HBV DNA polymerase (HDP) is the key target for antiviral drug treatment. The widely used drug against HBV infection is lamivudine which targets the reverse transcriptase activity of HDP and inhibits the replication of HBV. However, available evidence demonstrated that tyrosine (Y)-methionine (M)-aspartic acid (D)-aspartic acid (D) motif mutations significantly affected the efficacy of lamivudine binding. In particular, M204I mutations affect the drug binding mechanism and cause resistance to lamivudine. Therefore, in the present study we made an attempt to understand the mechanism of lamivudine resistance with the aid of molecular docking and molecular dynamics (MD) approach. The molecular docking results suggest that lamivudine adopts the most promising conformations to the native type HDP by identifying M-204 and Y-203 as a prospective partner for making polar contacts as compared to the mutant type HDP. The MD results showed that the average movements of atoms, especially atoms of the native type HDP– lamivudine complex, were small and displayed fast convergence of energy and charges in geometry. This highlights the stable binding of lamivudine with native type HDP as compared to mutant type HDP. The R2 and RMSF analysis certainly indicates conformational changes in the HDP structure due to M204I mutation. Furthermore the hydrogen bond (H-bond) analysis from the MD study showed that there is decreased number of intermolecular H-bonds in mutant HDP – lamivudine complex as compared to that in native type HDP – lamivudine complex. Overall, our study certainly will pave way to develop new drugs against the drug resistant mutations (M204I) of HBV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. J. Liang, Hepatology, 49, 13 – 21 (2009).

    Article  Google Scholar 

  2. D. Lavanchy, J. Clin. Virol., 34, 1 – 3 (2005).

    Google Scholar 

  3. S. A. Wynne, R. A. Crowther, and A. G. Leslie, Mol. Cell, 6, 771 – 780 (1999).

    Article  Google Scholar 

  4. B. J. McMahon, Hepatol. Intern., 3, 334 – 342 (2009)

    Article  Google Scholar 

  5. C. Mayerat, A. Mantegani, and P. C. Frei, J. Viral Hepatol., 6, 299 – 304 (1999).

    Article  CAS  Google Scholar 

  6. K.-H. Kim, N. D. Kim, and B.-L. Seong, Molecules, 15(9), 5878 – 5908 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. M. Seifer and D. N. Standring, J. Virol., 67, 4513 – 4520 (1993).

    PubMed Central  CAS  PubMed  Google Scholar 

  8. L. Lin and J. Hu, J. Virol., 82(5), 2305 – 2312 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. F. Zoulim, Liver Intern., 1, 111 – 116 (2011).

    Article  Google Scholar 

  10. M. Seifer, A. Patty, I. Serra, et al., Antivir. Res., 81(2), 147 – 155 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. T. T. Chang, R. G. Gish, R. de Man, et al., New Engl. J. Med., 354(10), 1001 – 10 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. B. Dikici, M. Bosnak, I. H. Kara, et al., Pediatr. Infect. Dis. J., 20(10), 988 – 992 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. M. F. Yuen and C. L. Lai, J. Antimicrob. Chemother., 51(3), 481 – 485 (2003).

    CAS  Google Scholar 

  14. R. K. Gaillard, J. Barnard, V. Lopez, et al., Antimicrob. Agents Chemother., 46 (4), 1005 – 1013 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, Nucl. Acid Res., 31(13), 3381 – 3385 (2003).

    Article  CAS  Google Scholar 

  16. N. Guex and M. C. Peitsch, Electrophoresis, 18(15), 2714 – 2723 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. B. Hess, C. Kutzner, D. Spoel, and E. Lindahl, J. Chem. Theory Comput., 4, 435 – 447 (2008).

    Article  CAS  Google Scholar 

  18. D. Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem., 26(16), 1701 – 1718 (2005).

    Article  Google Scholar 

  19. J. Feldman, K. A. Snyder, A. Ticoll, et al., FEBS Lett., 580, 1649 – 1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. J. Gasteiger, C. Rudolph and J. Sadowski, Tetrahedron Comput Meth., 3, 537 – 547. (1990).

    Article  CAS  Google Scholar 

  21. P. R. Daga, J. Duan, and R. J. Doerksen, Protein Sci., 19, 796 – 807 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. A. M. Ismail, O. P. Sharma, M. S. Kumar, et al., Bioinformation, 9, 121 – 125 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  23. A. W. Walsh, D. R. Langley, R. J. Colonno, et al., PLoS One, 5, e9195 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  24. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, J. Appl. Cryst., 26(2), 283 – 2911 (1993).

    Article  CAS  Google Scholar 

  25. Z. Yuan, T. L. Bailey, and R. D. Teasdale, Proteins, 58, 905 – 912 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. D. Ringe and G. A. Petsko, Methods Enzymol., 131, 389 – 433 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. S. Parthasarathy and M. R. Murthy, Protein Eng., 13, 9 – 13 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. H. A. Carlson and J. A. McCammon, Mol. Pharmacol., 57, 213 – 218 (2000).

    CAS  PubMed  Google Scholar 

  29. V. Karthick, V. Shanthi, R. Rajasekaran and K. Ramanathan, Protoplasma, 250(1), 197 – 207 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. R. Rajasekaran, C. George Priya Doss, C. Sudandiradoss, et al., C. R. Biol., 331, 409 – 417 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. A. Hinkle and L. S. Tobacman, J. Biol. Chem., 278, 506 – 513 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. K. Suhre and Y. H. Sanejouand, Nucl. Acids Res., 32, 610 – 614 (2004).

    Article  Google Scholar 

  33. A. Oda, M. Okayasu, Y. Kamiyama, et al., Bull. Chem. Soc. Jpn., 80, 1920 – 1925 (2007).

    Article  CAS  Google Scholar 

  34. A. C. Wallace, R. A. Laskowski, and J. M. Thornton, Protein Eng., 8, 127 – 134 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. K. L. Meagher and H. A. Carlson, Proteins, 58, 119 – 125 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. A. W. Schuttelkopf and D. M. F. Van Aalten, Acta Crystallogr., 60, 1355 – 1363 (2004).

    Google Scholar 

  37. T. Darden, L. Perera and L. Pedersen, Structure, 7, 55 – 60 (1999).

    Article  Google Scholar 

  38. E. Hindahl, B. Hess and D. van der Spoel, J. Mol. Model., 7, 306 – 317 (2001).

    Google Scholar 

  39. R. T. Kroemer, Curr. Protein Pept. Sci., 8, 312 – 328 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. J. Fung, C. L. Lai, W. K. Seto, and M. F. Yuen, J. Antimicrob Chemother., 66, 2715 – 2725 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express deep gratitude to management of the Vellore Institute of Technology for all the support, assistance, and constant encouragement to carry out this work

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srividhya, M., Ramanathan, K. Molecular Dynamics Simulation Approach to Understand Lamivudine Resistance in Hepatitis B Virus Polymerase. Pharm Chem J 49, 432–438 (2015). https://doi.org/10.1007/s11094-015-1300-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-015-1300-2

Keywords

Navigation