Skip to main content
Log in

Synthesis of Silicon and Silicon Carbide Nanoparticles by Pulsed Electrical Discharges in Dielectric Liquids

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) has been widely used in many applications, which require high mechanical endurance or high electrical resistance. It also serves as a basic material for light emitting diodes. Here, we present an in-liquid plasma method to produce SiC nanoparticles. A sustained spark-discharge in a dielectric liquid, which is energized by a nanosecond pulsed power supply, is established for the synthesis. To provide Si and C, we employed graphite and silicon as electrodes and cyclohexane (CHX) and tetramethylsilane (TMS) as dielectric liquids. For a reasonable comparison, we tested various combinations of electrode and liquid, namely Si-to-C in CHX, Si-to-Si in CHX, and C-to-C in TMS. We found that discharges in CHX produce Si particles encapsulated in C-shell and Si nanoparticles in C-matrix. Meanwhile, discharges in TMS consistently produce SiC nanoparticles with an average size of ~ 10 nm, regardless of the electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys 76(3):1363–1398

    Article  CAS  Google Scholar 

  2. Pensl G (ed) (1998) Silicon carbide, III-nitrides and related materials: ICSCIII-N'97. In: Proceedings of the 7th International Conference on Silicon Carbide, III-Nitrides and Related Materials, Stockholm, Sweden, September 1997, vol. 1. Trans Tech Publications

  3. Dhage S, Lee HC, Hassan MS, Akhtar MS, Kim CY, Sohn JM, Yang OB (2009) Formation of SiC nanowhiskers by carbothermic reduction of silica with activated carbon. Mater Lett 63(2):174–176

    Article  CAS  Google Scholar 

  4. Dai D, Zhang N, Zhang W, Fan J (2012) Highly bright tunable blue-violet photoluminescence in SiC nanocrystal–sodium dodecyl sulfonate crosslinked network. Nanoscale 4(10):3044–3046

    Article  CAS  PubMed  Google Scholar 

  5. Serdiuk T, Alekseev SA, Lysenko V, Skryshevsky VA, Géloën A (2012) Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology 23(31):315101

    Article  CAS  PubMed  Google Scholar 

  6. Weimer AW (ed) (2012) Carbide, nitride and boride materials synthesis and processing. Chapman & Hall, London

    Google Scholar 

  7. Weimer AW, Nilsen KJ, Cochran GA, Roach RP (1993) Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE J 39(3):493–503

    Article  CAS  Google Scholar 

  8. Raman V, Parashar VK, Dhakate S, Bahl OP, Dhawan U (2000) Synthesis of silicon carbide through the sol—gel process from rayon fibers. J Am Ceram Soc 83(4):952–954

    Article  CAS  Google Scholar 

  9. Leonhardt A, Liepack H, Biedermann K, Thomas J (2005) Synthesis of SiC nanorods by chemical vapor deposition. Fullerenes Nanotubes Carbon Nanostruct 13(S1):91–97

    Article  CAS  Google Scholar 

  10. Pampuch R, Stobierski L, Lis J, Raczka M (1987) Solid combustion synthesis of β SiC powders. Mater Res Bull 22(9):1225–1231

    Article  CAS  Google Scholar 

  11. Allaire F, Parent L, Dallaire S (1991) Production of submicron SiC particles by dc thermal plasma: a systematic approach based on injection parameters. J Mater Sci 26(15):4160–4165

    Article  CAS  Google Scholar 

  12. Hollabaugh CM, Hull DE, Newkirk LR, Petrovic JJ (1983) RF-plasma system for the production of ultrafine, ultrapure silicon carbide powder. J Mater Sci 18(11):3190–3194

    Article  CAS  Google Scholar 

  13. Lin H, Gerbec JA, Sushchikh M, McFarland EW (2008) Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor. Nanotechnology 19(32):325601

    Article  PubMed  CAS  Google Scholar 

  14. Vennekamp M, Bauer I, Groh M, Sperling E, Ueberlein S, Myndyk M, Kaskel S (2011) Formation of SiC nanoparticles in an atmospheric microwave plasma. Beilstein J Nanotechnol 2(1):665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rai P, Kim YS, Kang SK, Yu YT (2012) Synthesis of nanosized silicon carbide through non-transferred arc thermal plasma. Plasma Chem Plasma Process 32(2):211–218

    Article  CAS  Google Scholar 

  16. Tong L, Reddy RG (2006) Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater Res Bull 41(12):2303–2310

    Article  CAS  Google Scholar 

  17. Ko SM, Koo SM, Cho WS, Hwnag KT, Kim JH (2012) Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma. Ceram Int 38(3):1959–1963

    Article  CAS  Google Scholar 

  18. Yu IK, Rhee JH, Cho S, Yoon HK (2009) Design and installation of DC plasma reactor for SiC nanoparticle production. J Nucl Mater 386:631–633

    Article  CAS  Google Scholar 

  19. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161(2–3):614–626

    Article  CAS  PubMed  Google Scholar 

  20. Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47(22):224016

    Article  CAS  Google Scholar 

  21. Chen Q, Li J, Li Y (2015) A review of plasma–liquid interactions for nanomaterial synthesis. J Phys D Appl Phys 48(42):424005

    Article  CAS  Google Scholar 

  22. Yang Y, Cho YI, Fridman A (2017) Plasma discharge in liquid: water treatment and applications. CRC Press

    Book  Google Scholar 

  23. Chen Z, Wang J, Onyshchenko I, Wang Y, Leys C, Nikiforov A, Lei W (2021) Efficient and green synthesis of SiOC nanoparticles at near-ambient conditions by liquid-phase plasma. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c08637

    Article  Google Scholar 

  24. Merciris T, Valensi F, Hamdan A (2021) Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges. Journal of Applied Physics 129(6):063303

    Article  CAS  Google Scholar 

  25. Hamdan A, Kosior F, Noel C, Henrion G, Audinot JN, Gries T, Belmonte T (2013) Plasma-surface interaction in heptane. J Appl Phys 113(21):213303

    Article  CAS  Google Scholar 

  26. Descoeudres A, Hollenstein C, Wälder G, Demellayer R, Perez R (2008) Time-and spatially-resolved characterization of electrical discharge machining plasma. Plasma Sources Sci Technol 17(2):024008

    Article  CAS  Google Scholar 

  27. Belmonte T, Kabbara H, Noël C, Pflieger R (2018) Analysis of Zn I emission lines observed during a spark discharge in liquid nitrogen for zinc nanosheet synthesis. Plasma Sources Sci Technol 27(7):074004

    Article  CAS  Google Scholar 

  28. Taylor ND, Fridman G, Fridman A, Dobrynin D (2018) Non-equilibrium microsecond pulsed spark discharge in liquid as a source of pressure waves. Int J Heat Mass Transf 126:1104–1110

    Article  Google Scholar 

  29. Hamdan A, Gorry J, Merciris T, Margot J (2020) Electrical characterization of positive and negative pulsed nanosecond discharges in water coupled with time-resolved light detection. J Appl Phys 128(3):033304

    Article  CAS  Google Scholar 

  30. Lee H, Lee WJ, Park YK, Ki SJ, Kim BJ, Jung SC (2018) Liquid phase plasma synthesis of iron oxide nanoparticles on nitrogen-doped activated carbon resulting in nanocomposite for supercapacitor applications. Nanomaterials 8(4):190

    Article  PubMed Central  CAS  Google Scholar 

  31. Glad X, Gorry J, Cha MS, Hamdan A (2021) Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons. Sci Rep 11(1):1–12

    Article  CAS  Google Scholar 

  32. Kabbara H, Ghanbaja J, Noël C, Belmonte T (2017) Synthesis of Cu@ ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano-Struct Nano-Objects 10:22–29

    Article  CAS  Google Scholar 

  33. Agati M, Boninelli S, Hamdan A (2021) Atomic scale microscopy unveils the growth mechanism of 2D-like CuO nanoparticle agglomerates produced via electrical discharges in water. Mater Chem Phys 261:124244

    Article  CAS  Google Scholar 

  34. Gao X, Xu C, Yin H, Chen P, Wang X, Song Q, Liu J (2020) Synthesis of nano titanium oxide with controlled oxygen content using pulsed discharge in water. Adv Powder Technol 31(3):986–992

    Article  CAS  Google Scholar 

  35. Hamdan A, Kabbara H, Noel C, Ghanbaja J, Redjaïmia A, Belmonte T (2018) Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology 40:152–159

    Article  CAS  Google Scholar 

  36. Dobrynin D, Rakhmanov R, Fridman A (2019) Nanosecond-pulsed discharge in liquid nitrogen: optical characterization and production of an energetic non-molecular form of nitrogen-rich material. J Phys D Appl Phys 52(39):39LT01

    Article  CAS  Google Scholar 

  37. Merciris T, Valensi F, Hamdan A (2020) Determination of the electrical circuit equivalent to a pulsed discharge in water: assessment of the temporal evolution of electron density and temperature. IEEE Trans Plasma Sci 48(9):3193–3202

    Article  CAS  Google Scholar 

  38. Glad X, Profili J, Cha MS, Hamdan A (2020) Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities. J Appl Phys 127(2):023302

    Article  CAS  Google Scholar 

  39. Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM (2006) Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl 4. J Cluster Sci 17(4):565–578

    Article  CAS  Google Scholar 

  40. Mishra G, Parida KM, Singh SK (2015) Facile fabrication of S-TiO2/β-SiC nanocomposite photocatalyst for hydrogen evolution under visible light irradiation. ACS Sustain Chem Eng 3(2):245–253

    Article  CAS  Google Scholar 

  41. Muthakarn P, Sano N, Charinpanitkul T, Tanthapanichakoon W, Kanki T (2006) Characteristics of carbon nanoparticles synthesized by a submerged arc in alcohols, alkanes, and aromatics. J Phys Chem B 110(37):18299–18306

    Article  CAS  PubMed  Google Scholar 

  42. Chandra S, Das P, Bag S, Laha D, Pramanik P (2011) Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3(4):1533–1540

    Article  CAS  PubMed  Google Scholar 

  43. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C 60: a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  44. Hare JP, Kroto HW, Taylor R (2013) Reprint of: preparation and UV/visible spectra of fullerenes C60 and C70. Chem Phys Lett 589:57–60

    Article  CAS  Google Scholar 

  45. Komatsu K, Fujiwara K, Tanaka T, Murata Y (2000) The fullerene dimer C120 and related carbon allotropes. Carbon 38(11–12):1529–1534

    Article  CAS  Google Scholar 

  46. Lin YR, Ho CY, Chuang WT, Ku CS, Kai JJ (2014) Swelling of ion-irradiated 3C–SiC characterized by synchrotron radiation based XRD and TEM. J Nucl Mater 455(1–3):292–296

    Article  CAS  Google Scholar 

  47. Haq AU, Lucke P, Benedikt J, Maguire P, Mariotti D (2020) Dissociation of tetramethylsilane for the growth of SiC nanocrystals by atmospheric pressure microplasma. Plasma Processes Polym 17(5):1900243

    Article  CAS  Google Scholar 

  48. Károly Z, Mohai I, Klébert S, Keszler A, Sajó IE, Szépvölgyi J (2011) Synthesis of SiC powder by RF plasma technique. Powder Technol 214(3):300–305

    Article  CAS  Google Scholar 

  49. Coleman D, Lopez T, Yasar-Inceoglu O, Mangolini L (2015) Hollow silicon carbide nanoparticles from a non-thermal plasma process. J Appl Phys 117(19):193301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2020-CPF-1975.37. The authors thank the Fonds de Recherche du Québec–Nature et Technologie (FRQ-NT) and the Canada Foundation for Innovation (CFI) for funding the research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hamdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 133 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Abiad, D.E. & Cha, M.S. Synthesis of Silicon and Silicon Carbide Nanoparticles by Pulsed Electrical Discharges in Dielectric Liquids. Plasma Chem Plasma Process 41, 1647–1660 (2021). https://doi.org/10.1007/s11090-021-10205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10205-3

Keywords

Navigation