Skip to main content
Log in

Oxidation and Hot Corrosion Behavior of Thermal Barrier Coatings-A Brief Review

  • Review
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Oxidation and hot corrosion occur on metallic parts of gas turbines on account of exposure to high temperature. Thermal barrier coatings (TBCs) are used to protect gas turbine components made of Ni-based superalloys from high temperature oxidation as well as hot corrosion. The stability of coated metallic gas turbine components is higher than that of non-coated ones. Suitable coating is crucial for obtaining higher turbine inlet temperature. However, the problem of conventional TBC system is the failure of yittria-stabilized zirconia (YSZ) top coat due to formation of thermally grown oxide (TGO) layer between the bond coat and YSZ top coat. The TGO formation should be properly controlled in order to prevent the spallation of the top coat. In the current review paper, an attempt has been made to focus oxidation and hot corrosion behavior of conventional thermal barrier coatings applied on gas turbine components for increasing the efficiency of gas turbines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Ebrahimzade, H. Uchtmann, L. Singheiser, M. Küger, and J. Malzbender, Microstructure and cyclic oxidation behavior of APS TBC systems drilled with various laser methods. Surface and Coatings Technology. 378, 2019 (1–11).

    Article  Google Scholar 

  2. V. Sankar, Thermal barrier coatings material selection, method of preparation and applications-Review. International Journal of Mechanical Engineering and Robotics Research. 3, 2014 (510–517).

    Google Scholar 

  3. R. A. Miller, Oxidation-based model for thermal barrier coating life. Journal of the American Ceramic Society. 67, 1984 (517–521).

    Article  CAS  Google Scholar 

  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. 46, 2001 (505–553).

    Article  Google Scholar 

  5. V. Tolpygo, D. R. Clarke, and K. S. Murphy, The effect of grit blasting on the oxidation behavior of a Platinum-modified Nickel-Aluminide coating. Metallurgical and Materials Transactions A. 32, 2001 (1467–1478).

    Article  Google Scholar 

  6. V. K. Tolpygo and D. R. Clarke, Morphological evolution of thermal barrier coatings induced by cyclic oxidation. Surface and Coatings Technology. 163–164, 2003 (81–86).

    Article  Google Scholar 

  7. N. M. Yanar, F. S. Pettit, and G. H. Meier, Failure characteristics during cyclic oxidation of yttria stabilized zirconia thermal barrier coatings deposited via electron beam physical vapor deposition on platinum aluminide and on NiCoCrAlY bond coats with processing modifications for improved performances. Metallurgical and Materials Transactions A. 37, 2006 (1563–1580).

    Article  Google Scholar 

  8. M. J. Stiger, N. M. Yanar, R. W. Jackson, S. J. Laney, F. S. Pettit, G. H. Meier, A. S. Gandhi, and C. G. Levi, Development of intermixed zones of alumina/zirconia in thermal barrier coating systems. Metallurgical and Materials Transactions A. 38, 2007 (848–857).

    Article  Google Scholar 

  9. N. M. Yanar, M. Helminiak, G. H. Meier, and F. S. Pettit, Comparison of the failures during cyclic oxidation of yttria-stabilized (7 to 8 weight percent) zirconia thermal barrier coatings fabricated via electron beam physical vapor deposition and air plasma spray. Metallurgical and Materials Transactions A. 42, 2011 (905–921).

    Article  CAS  Google Scholar 

  10. D. Liu, P. E. J. Flewitt, and K. R. Hallam, Influence of oxidation temperature and time on stresses in thermal barrier coated aerofoil sections. Materials at High Temperatures. 29, 2012 (181–186).

    Article  CAS  Google Scholar 

  11. M. J. Pomeroy, Coatings for gas turbine materials and long term stability issues. Materials & Design. 26, 2005 (223–231).

    Article  CAS  Google Scholar 

  12. H. Rana, A review paper on thermal barrier coatings (TBC) to improve the efficiency of gas turbine. IJSRD-International Journal for Scientific Research & Development. 4, 2016 (1161–1165).

    Google Scholar 

  13. X. Q. Cao, R. Vassen, and D. Stoever, Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society. 24, 2004 (1–10).

    Article  CAS  Google Scholar 

  14. J. D. Osorio, A. Toro, and J. P. Hernandez-Ortiz, Thermal barrier coatings for gas turbine applications: failure mechanisms and key microstructural features. Dyna. 79, 2012 (149–158).

    Google Scholar 

  15. T. M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. Journal of Propulsion and Power. 22, 2006 (361–374).

    Article  CAS  Google Scholar 

  16. C. Lin, Y. Chai, and Y. Li, Oxidation simulation of thermal barrier coatings with actual microstructures considering strength difference property and creep-plastic behavior. Coatings. 8, 2018 (338–356).

    Article  Google Scholar 

  17. M. Góral, T. Kubaszek, and M. Pytel, Isothermal oxidation of thermal barrier coatings deposited using LPPS, CVD, and PS-PVD methods on MAR M247 nickel superalloy. Advances in Manufacturing Science and Technology. 44, 2020 (9–14).

    Article  Google Scholar 

  18. F. I. S. Omoniyi, P. A. Olubambi, and E. R. Sadiku, High temperature oxidation resistance of Ni22Cr11Al bond coat produced by Spark Plasma Sintering as thermal barrier coatings. Journal of Material Science & Engineering. 5, 2016 (1–5).

    Google Scholar 

  19. F. H. Latief, l-Sayed E, Sherif M Kakehi K, Role of aluminide coating on oxidation resistance of Ni-based single crystal super alloy at 900℃. International Journal of Electrochemical Science. 10, 2015 (1873–1882).

    Google Scholar 

  20. X. Zhou, Graphene oxidation barrier coating. Undergraduate Honors Theses, University of Colorado, Boulder. 2011; p. 704.

  21. S. Sreenivas, U. Chandrasekhar, K. H. Reddy, K. Elangaan, and B. R. Sridhar, Dilapidation of the TBC system during the burner rig test. International Journal of Engineering and Technology. 7, 2015 (868–875).

    CAS  Google Scholar 

  22. G. Sridhar, M. Divya, D. Mathew, and H. Gowrishree, CFD analysis of a thermal barrier coated blade. International Journal of Scientific and Research Publications. 9, 2019 (50–58).

    Article  Google Scholar 

  23. S. Datta and S. Das, A new high temperature resistant glass-ceramic coating developed in CGCRI, Kolkata. Transactions of the Indian Ceramic Society 64, 2005 (25–32).

    Article  CAS  Google Scholar 

  24. S. Datta and S. Das, A new high temperature resistant glass-ceramic coating for gas turbine engine components. Bulletin of Material Science. 28, 2005 (689–696).

    Article  CAS  Google Scholar 

  25. S. Das, S. Datta, D. Basu, and G. C. Das, Glass-ceramics as oxidation resistant bond coat in thermal barrier coating system. Ceramics International. 35, 2009 (1403–1406).

    Article  CAS  Google Scholar 

  26. S. Das, S. Datta, D. Basu, and G. C. Das, Thermal cyclic behavior of glass-ceramic bonded thermal barrier coating on nimonic alloy substrate. Ceramics International. 35, 2009 (2123–2129).

    Article  CAS  Google Scholar 

  27. K. M. Doleker, Y. Ozgurluk, A. S. Parlakyigit, D. Ozkan, T. Gulmez, and A. C. Karaoglanli, Oxidation behavior of NiCr/YSZ thermal barrier coatings (TBCs). Open Chemistry. 16, 2018 (876–881).

    Article  CAS  Google Scholar 

  28. J. J. Gu, S. S. Joshi, Y. S. Ho, B. W. Wei, T. Y. Huang, J. Lee, D. Berman, N. B. Dahotre, and S. M. Aouadi, Oxidation-induced healing in laser-processed thermal barrier coatings. Thin Solid Films. 688, 2019 137481.

    Article  CAS  Google Scholar 

  29. K. M. Doleker and A. C. Karaoglanli, Comparison of oxidation behavior of YSZ and Gd2Zr2O7thermal barrier coatings (TBCs). Surface and Coatings Technology. 318, 2017 (198–207).

    Article  CAS  Google Scholar 

  30. S. Mahade, R. Li, N. Curry, and S. Björklund, Markocsan N and Nylén P, Isothermal oxidation behavior of Gd2Zr2O7/YSZ multilayered thermal barrier coatings. International Journal of Applied Ceramic Technology. 13, 2016 (198–207).

    Article  Google Scholar 

  31. X. Li, X. Y. Peng, H. Dong, et al., The evaluation of durability of plasma-sprayed thermal barrier coatings with double-layer bond coat. Coatings. 9, 2019 (241–252).

    Article  Google Scholar 

  32. M. Saremi, A. Keyvani, and M. H. Sohi, Hot corrosion resistance and mechanical behaviour of atmospheric plasma sprayed conventional and nanostructured zirconia coatings. International Journal of Modern Physics: Conference Series. 5, 2012 (720–727).

    CAS  Google Scholar 

  33. Y. Wang and C. Zhou, Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4+V2O5 molten salts. Progress in Natural Science: Materials International. 27, 2017 (507–513).

    Article  CAS  Google Scholar 

  34. T. E. Strangman, Thermal barrier coatings for turbine air foils. Thin Solid Films. 127, 1985 (93–106).

    Article  CAS  Google Scholar 

  35. C. Leyers, I. G. Wright, and B. A. Pint, Hot corrosion of an EB-PVD thermal-barrier coating system at 950℃. Oxidation of Metals. 54, 2000 (401–424).

    Article  Google Scholar 

  36. J. Wells, N. Chapman, J. Sumner, and P. Walker, The use of APS thermal barrier coatings in corrosive environments. Oxidation of Metals. 88, 2017 (97–108).

    Article  CAS  Google Scholar 

  37. M. P. Borom, C. A. Johnson, and L. A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology. 86–87, 1996 (116–126).

    Article  Google Scholar 

  38. C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif, and C. A. Johnson, Environmental degradation of thermal barrier coatings by molten deposits. MRS Bulletin. 37, 2012 (932–941).

    Article  CAS  Google Scholar 

  39. H. Zhao, C. G. Levi, and H. N. G. Wadley, Molten silicate interactions with thermal barrier coatings. Surface and Coatings Technology. 251, 2014 (74–86).

    Article  CAS  Google Scholar 

  40. V. Tolpygo, Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings. Oxidation of Metals 88, 2017 (87–96).

    Article  CAS  Google Scholar 

  41. Z. Soleimnipour, S. Baghshahi, R. Sheja-razavi, and M. Salehi, Hot corrosion behavior of Al2O3 laser clad plasma sprayed YSZ thermal barrier coatings. Ceramics International. 42, 2016 (17698–17705).

    Article  Google Scholar 

  42. V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. Journal of the American Ceramic Society. 98, 2015 (1769–1777).

    Article  CAS  Google Scholar 

  43. X. Xie, H. Guo, S. Gong, and H. Xu, Hot corrosion behavior of double ceramic layer LaTi2Al9O19 / YSZ thermal barrier coatings. Chinese Journal of Aeronautics. 25, 2012 (137–142).

    Article  CAS  Google Scholar 

  44. M. K. Prasad, K. S. Rao, M. Reddy, and G. P. Sreedha, Hot corrosion of SrTiO3 perovskite in Na2SO4 + 50 wt.% V2O5 and Na2SO4 + 10 wt.% NaCl environments at 900℃. International Journal of Corrosion 2018, 2018 (1–7).

    Article  Google Scholar 

  45. R. L. Jones, Some aspects of the hot corrosion of thermal barrier coatings. Journal of Thermal Spray Technology. 6, 1997 (77–84).

    Article  CAS  Google Scholar 

  46. W. B. Gong, C. K. Sha, D. Q. Sun, and W. Q. Wang, Microstructures and thermal insulation capability of plasma sprayed nanostructured ceria stabilized zirconia coatings. Surface and Coating Technology. 201, 2006 (3109–3115).

    Article  CAS  Google Scholar 

  47. S. Y. Park, J. H. Kim, M. C. Kim, H. S. Song, and C. G. Park, Microscopic observation of degradation behavior in yittria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surface and Coating Technology. 190, 2005 (357–365).

    Article  CAS  Google Scholar 

  48. M. R. Rahimipour and M. S. Mahdipoor, Comparative study of plasma sprayed yittria and ceria stabilized zirconia properties. International Journal of Engineering. 26, 2013 (13–18).

    Article  Google Scholar 

  49. D. A. Shifler, Hot corrosion: a modification of reactants causing degradation. Materials at High Temperatures. 35, 2018 (225–235).

    Article  CAS  Google Scholar 

  50. S. Das, S. Datta, D. Basu, and G. C. Das, Hot corrosion of glass coating on nickel base superalloy. Ceramics International. 34, 2008 (1215–1222).

    Article  CAS  Google Scholar 

  51. N. Jegadeeswaran, M. R. Ramesh, and K. U. Bhat, Combating corrosion degradation of turbine materials using HVOF sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY coating. International Journal of Corrosion. 2013, 2013 (1–11).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Aeronautics Research and Development Board (AR&DB), India, through a sponsored project (GAP0263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumana Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Ghosh, S. Oxidation and Hot Corrosion Behavior of Thermal Barrier Coatings-A Brief Review. High Temperature Corrosion of mater. 99, 331–343 (2023). https://doi.org/10.1007/s11085-023-10160-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10160-8

Keywords

Navigation