Skip to main content
Log in

Modeling Two- and Three-Stage Oxygen Tracer Experiments during High-Temperature Oxidation of Metals with a High Oxygen Solubility

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The numerical tool EKINOX-Zr has been upgraded to simulate oxygen tracer experiments during the high-temperature oxidation of a metal with a high oxygen solubility limit. The penetration of 18O tracer is calculated during the dynamic evolution of the ZrO2-xZr(O )zr system. The numerical approach allows to explicitly take into account the variation of the tracer diffusion coefficient through the oxide scale as a function of the vacancy concentration. A classical two-stages 16O2/18Otracer experiment has been simulated. It is shown that a classical fitting procedure on the 18O concentration profile obtained for short-time experiments leads to the identification of the oxygen chemical diffusion coefficient. The second type of tracer experiment is proposed using a three-stages 16O2/18O2/16O2 oxidation. It allows the direct estimation of the diffusion coefficient from the transport of 18O peak in the growing oxide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In order to clarify the notations, all the terms “A” linked to 18O will be mentioned as A18. The same convention is followed for the terms linked to the 16O. When a generic term is used, it will be mentioned as A i .

  2. In case of an anionic transport in the oxide scale, the anion flux is predominant, whereas the cation flux is negligible.

  3. The same development can be done for \(\mu_{18}\).

  4. The superscript \(p\) is linked to the metallic slabs whereas the superscript \(q\) is linked to the oxide slabs.

Abbreviations

\(a_{i}^{ }\) :

Chemical activity of the specie \(i\)

\(R\) :

Universal gas constant

\(C_{\text{O}}^{ }\) :

Oxygen concentration

\(R_{18}\) :

Volume ratio of the mix gas 18O2/16O2

\(D_{\text{O}}^{p}\) :

Oxygen diffusion coefficient in the metal

\(T\) :

Temperature

\(D_{\text{ox}}^{q}\) :

Oxygen diffusion coefficient in the oxide

\(X_{i}^{r}\) :

Concentration of the specie \(i\) in the slab \(r\)

\(e\) :

Elementary charge

\(a\) :

Relative electric charge of the oxygen vacancies

\({\text{f}}_{\text{O}}\) :

Correlation factor

\(\Delta t\) :

Numerical time step

\(J_{i}^{r}\) :

Flux of the specie \(i\) from the slab \(r\) to the slab \(r + 1\)

\(\mu_{\text{O}}^{ }\) :

Chemical potential of oxygen

\(K\) :

Equilibrium constant

\(\sigma_{k}^{ }\) :

Electrical conductivity of the specie \(k\)

\(L_{ij}\) :

Crossed diffusion coefficient

\(\varOmega^{r}\) :

Molar volume of the slab \(r\)

References

  1. Y. H. Mishin and G. Borchardt, Journal of Physics III France 3, 1993 (863).

    Article  Google Scholar 

  2. S. Chevalier, G. Strehl, J. Favergeon, F. Desserrey, S. Weber, O. Heintz, G. Borchardt and J.-P. Larpin, Materials at High Temperature 20, 2003 (253).

    Article  Google Scholar 

  3. R. Tricot, Techniques de l’Ingénieur M2360 (1994).

  4. C. Toffolon-Masclet, C. Desgranges. C. Corválan-Moya, J.-C. Brachet. Solid State Phenomenon 172–174, 652 (2011).

  5. B. Mazères, C. Desgranges, C. Toffolon and D. Monceau, Oxidation of Metals 79, 2013 (121).

    Article  Google Scholar 

  6. B. Mazères, C. Desgranges, C. Toffolon and D. Monceau, Corrosion Science 103, 2016 (10).

    Article  Google Scholar 

  7. G. Petot-Ervas, D. Monceau and C. Petot, Ceramic Transactions 24, 1991 (113).

    Google Scholar 

  8. P. Kofstad, High Temperature Corrosion, (Elsevier Apllied Science Publishers LTD, London, 1988), pp. 164–168.

    Google Scholar 

  9. H. Schmalzried, Chemical Kinetics of Solids. Eds: (Wiley, VCH Verlag GmbH, 1995).

  10. N. Dupin, I. Ansara, C. Servant, C. Toffolon, C. Lemaignan and J.-C. Brachet, Journal of Nuclear Material 275, 1999 (287).

    Article  Google Scholar 

  11. X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon and J.-C. Brachet, Journal of Nuclear Materials 377, 2008 (359).

    Article  Google Scholar 

  12. G. Bakradze, L. P. H. Jeurgens, T. Acatürk, U. Starke and E. J. Mittemeijer, Acta Materialia 59, 2011 (7498).

    Article  Google Scholar 

  13. J. Philibert, Diffusion et transport de matière dans les solides, (Les Editions de Physique, Paris, 1990), pp. 5–11.

    Google Scholar 

Download references

Acknowledgements

The authors want to thank AREVA NP and EDF for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Monceau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazères, B., Desgranges, C., Toffolon-Masclet, C. et al. Modeling Two- and Three-Stage Oxygen Tracer Experiments during High-Temperature Oxidation of Metals with a High Oxygen Solubility. Oxid Met 89, 517–529 (2018). https://doi.org/10.1007/s11085-017-9816-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9816-3

Keywords

Navigation