Skip to main content
Log in

A Point-Free Approach to Canonical Extensions of Boolean Algebras and Bounded Archimedean \(\ell\)-Algebras

  • Published:
Order Aims and scope Submit manuscript

Abstract

Recently W. Holliday gave a choice-free construction of a canonical extension of a boolean algebra B as the boolean algebra of regular open subsets of the Alexandroff topology on the poset of proper filters of B. We make this construction point-free by replacing the Alexandroff space of proper filters of B with the free frame \(\mathcal {L}_B\) generated by the bounded meet-semilattice of all filters of B (ordered by reverse inclusion) and prove that the booleanization of \(\mathcal {L}_B\) is a canonical extension of B. Our main result generalizes this approach to the category \(\varvec{ ba \ell }\) of bounded archimedean \(\ell\)-algebras, thus yielding a point-free construction of canonical extensions in \(\varvec{ ba \ell }\). We conclude by showing that the algebra of normal functions on the Alexandroff space of proper archimedean \(\ell\)-ideals of A is a canonical extension of \(A\in \varvec{ ba \ell }\), thus providing a generalization of the result of Holliday to \(\varvec{ ba \ell }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Balbes, R., Dwinger, Ph.: Distributive lattices. University of Missouri Press, Columbia (1974)

  2. Banaschewski, B.: The real numbers in pointfree topology, Textos de Matemática. Série B [Texts in Mathematics. Series B], vol. 12. Universidade de Coimbra, Departamento de Matemática, Coimbra (1997)

  3. Banaschewski, B.: On the function ring functor in pointfree topology. Appl. Categ. Struct. 13(4), 305–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales. I. Houston J. Math. 6(3), 301–312 (1980)

  5. Bergman, G.M.: Boolean rings of projection maps. J. London Math. Soc. 4, 593–598 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezhanishvili, G., Marra, V., Morandi, P.J., Olberding, B.: De Vries powers: A generalization of Boolean powers for compact Hausdorff spaces. J. Pure Appl. Algebra 219(9), 3958–3991 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezhanishvili, G., Marra, V., Morandi, P.J., Olberding, B.: Idempotent generated algebras and Boolean powers of commutative rings. Algebra Univers. 73, 183–204 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezhanishvili, G., Morandi, P.J., Olberding, B.: Bounded Archimedean \(\ell\)-algebras and Gelfand-Neumark-Stone duality. Theory Appl. Categ. 28(16), 435–475 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Bezhanishvili, G., Morandi, P.J., Olberding, B.: Dedekind completions of bounded Archimedean \(\ell\)-algebras. J. Algebra Appl. 12(1), 16 pp (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bezhanishvili, G., Morandi, P.J., Olberding, B.: A functorial approach to Dedekind completions and the representation of vector lattices and \(\ell\)-algebras by normal functions. Theory Appl. Categ. 31(37), 1095–1133 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bezhanishvili, G., Morandi, P.J., Olberding, B.: Canonical extensions of bounded archimedean vector lattices. Algebra Univers. 79(1), Paper No. 12, 17 pp (2018)

  12. Bezhanishvili, G. Morandi, P.J., Olberding, B.: Specker algebras: A survey, Algebraic Techniques and Their Use in Describing and Processing Uncertainty. To the Memory of Professor Walker, E.A., Editors: Nguyen, H., Kreinovich, V., Springer, pp. 1–19 (2020)

  13. Bezhanishvili, N., Holliday, W.: Choice-free Stone duality. J. Symb. Log. 85(1), 109–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Birkhoff, G.: Lattice theory, Third ed., American Mathematical Society Colloquium Publications, vol. 25, Providence, R.I., (1979)

  15. Bourbaki, N.: General topology. Chapters 1–4, Springer, Berlin (1998). Translated from the French, Reprint of the 1989 English translation

  16. Dăneţ, N.: Riesz spaces of normal semicontinuous functions. Mediterr. J. Math. 12(4), 1345–1355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dilworth, R.P.: The normal completion of the lattice of continuous functions. Trans. Amer. Math. Soc. 68, 427–438 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238(1), 345–371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gehrke, M., Jansana, R., Palmigiano, A.: \(\Delta _{1}\)-completions of a poset. Order 30(1), 39–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Japon. 40(2), 207–215 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Math. Scand. 94(1), 13–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gehrke, M., Priestley, H.A.: Canonical extensions and completions of posets and lattices. Rep. Math. Logic 43, 133–152 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Gelfand, I., Neumark, M.: On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S. 12(54), 197–213 (1943)

  24. Gutiérrez García, J., Kubiak, T., Picado, J.: Localic real functions: a general setting. J. Pure Appl. Algebra 213(6), 1064–1074 (2009)

  25. Gutiérrez García, J., Mozo Carollo, I., Picado, J.: Normal semicontinuity and the Dedekind completion of pointfree function rings, Algebra Univers. 75(3), 301–330 (2016)

  26. Gutiérrez García, J., Picado, J.: Rings of real functions in pointfree topology. Topol. Appl. 158(17), 2264–2278 (2011)

  27. Gutiérrez García, J., Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218(5), 784–803 (2014)

  28. Henriksen, M., Johnson, D.G.: On the structure of a class of Archimedean lattice-ordered algebras. Fund. Math. 50, 73–94 (1961/1962)

  29. Holliday, W.: Possibility frames and forcing for modal logic, UC Berkeley Working Paper in Logic and the Methodology of Science, https://escholarship.org/uc/item/0tm6b30q (2018)

  30. Isbell, J.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. Johnson, D.G.: The completion of an archimedean \(f\)-ring. J. London Math. Soc. 40, 493–496 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  33. Jónsson, B., Tarski, A.: Boolean algebras with operators. I, Amer. J. Math. 73, 891–939 (1951)

  34. Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces, vol. I. North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam (1971)

    MATH  Google Scholar 

  35. Nakano, H.: Modern Spectral Theory. Maruzen Co. Ltd., Tokyo (1950)

    MATH  Google Scholar 

  36. Picado, J., Pultr, A.: Frames and locales: Topology without points, Frontiers in Mathematics. Birkhäuser/Springer, Basel (2012)

    Book  MATH  Google Scholar 

  37. Rota, G.-C.: The valuation ring of a distributive lattice, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), Dept. Math., Univ. Houston, Houston, Tex, pp. 574–628 (1973)

  38. Stone, M.H.: A general theory of spectra. I. Proc. Nat. Acad. Sci. U.S.A. 26, 280–283 (1940)

Download references

Acknowledgements

Luca Carai was partly supported by the Italian Ministry of University and Research through the PRIN project n. 20173WKCM5 Theory and applications of resource sensitive logics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Morandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical lemmas

Appendix: Technical lemmas

In this appendix we present the technical lemmas used in Sections 5 and 6 to prove that the pair \((D(\mathbb {R}[B]),\alpha )\) is a canonical extension of \(A\in \varvec{ ba \ell }\) and \(D(\mathbb{R}[B]) \cong N(X_{A}) \cong B(Y_{A})\). We start by recalling that \(0 \le u \in A\) is a weak order-unit if \(a \wedge u = 0\) implies \(a = 0\) for each \(a \in A\). It is well known that a strong order-unit is a weak order-unit (see, e.g., [14, Lem. XIII.11.4]). It is easy to see that any positive multiple of a strong order-unit is again a strong order-unit. Thus, every positive multiple of a strong order-unit is a weak order-unit. We will use this in the proof of next lemma.

Lemma A.1

Let \(A \in \varvec{ ba \ell }\).

  1. (1)

    If \(e, f \in {\text {Id}}(A)\) and \(0 \le r, s \in \mathbb {R}\), then \(re \wedge sf = \min (r, s)(e \wedge f)\).

  2. (2)

    Let \(a \in A\) and \(r, s \in \mathbb {R}\) with \(r < s\). If \(a \vee r \ge s\), then \(a \ge s\).

Proof

(1) Without loss of generality we may assume that \(r \le s\). Since \((e - (e\wedge f)) \wedge f = (e \wedge \neg f) \wedge f= 0\), we have \(r(e - (e\wedge f))\wedge sf = 0\) by Remark 3.15(9). Therefore,

$$\begin{aligned} 0 \le (re \wedge sf) - r(e \wedge f) \le r(e - (e\wedge f))\wedge sf = 0 \end{aligned}$$

by Remark 3.15(1). Thus, \(re \wedge sf = r(e \wedge f) = \min (r,s)(e \wedge f)\).

(2) If \(a \vee r \ge s\), then \(-s \ge -(a \vee r) = (-a) \wedge (-r)\), so

$$0 \ge s + [(-a) \wedge (-r)] = (s-a) \wedge (s-r).$$

This yields

$$\begin{aligned} 0 = [(s-a) \wedge (s-r)] \vee 0 = [(s-a) \vee 0] \wedge (s-r). \end{aligned}$$

Because \(s-r > 0\), it is a weak order-unit. Therefore, \((s-a) \vee 0 = 0\), and so \(s-a \le 0\). Thus, \(s \le a\).

Lemma A.2

Let \(A \in \varvec{ ba \ell }\) and I,J be \(\ell\)-ideals of A. 

  1. (1)

    If \(I + J = A\), then there are \(a \in I\), \(b \in J\) with \(0 \le a, b\) and \(a + b = 1\).

  2. (2)

    \(\langle {I}\rangle = A\) implies \(I = A\).

  3. (3)

    If \(I, J \in \mathsf{{Arch}}(A)\), then \(I \vee J = \langle {I + J}\rangle\).

  4. (4)

    If \(I,J \in \mathsf{{Arch}}(A)\) and \(I \vee J = A\), then \(I + J = A\).

Proof

(1) Since \(I + J = A\), there are \(x \in I\) and \(y \in J\) with \(1 = x + y\). Since \(y \in J\), we have \(1 + J = x + J \le |x| + J\). Set \(a = 1 \wedge |x|\). Then \(0 \le a \le 1\) and \(a \in I\) because \(x \in I\), so \(|x| \in I\). Therefore, \(a + J = (1 + J) \wedge (|x| + J) = 1 + J\). Thus, \(b := 1-a \in J\). Clearly \(a + b = 1\) and \(0 \le b\) since \(a \le 1\).

(2) Suppose \(\langle {I}\rangle = A\). Then \(1 \in \langle {I}\rangle\), so \((n\cdot 1-1)^+ \in I\) for each \(n \ge 1\) by Proposition 4.8. In particular, \((2\cdot 1-1)^+ \in I\). Thus, \(1 \in I\), and so \(I = A\).

(3) Since \(I + J \subseteq I \vee J\) and \(I \vee J\) is archimedean, we have \(\langle {I+J}\rangle \subseteq I \vee J\). On the other hand, \(\langle {I+J}\rangle\) is an archimedean \(\ell\)-ideal which contains both I and J, so it contains \(I \vee J\). Thus, \(I \vee J = \langle {I + J}\rangle\).

(4) This follows from (2) and (3).

Let L be a frame and B its free boolean extension. We recall from Section 2 that for \(a \in L\), we write \(a^*\) for the pseudocomplement of a in L. On the other hand, we write \(\lnot a\) for the complement of a in B.

Lemma A.3

Let \(A \in \varvec{ ba \ell }\) and B be the free boolean extension of \(\mathsf{{Arch}}(A)\).

  1. (1)

    If \(I \in \mathsf{{Arch}}(A)\), then \(x_I = \bigvee \{ x_{\lnot J} \mid J \vee I = A\}\).

  2. (2)

    If \(0 \le f \in D(\mathbb {R}[B])\), then there are \(0 \le r_I \in \mathbb {R}\) with \(f = \bigvee \{r_I x_{\lnot I} \mid I \in \mathsf{{Arch}}(A) \}\).

  3. (3)

    Let \(0 \le f \in D(\mathbb {R}[B])\) and \(0 \le t \in \mathbb {R}\). If \(f = \bigvee \{ r_I x_{\lnot I} \mid I \in \mathsf{{Arch}}(A) \}\) with \(r_I \ge 0\), then \(f + t = \bigvee \{ (t + r_I)x_{\lnot I} \mid I \in \mathsf{{Arch}}(A)\}\).

Proof

(1) Since \(\mathsf{{Arch}}(A)\) is a regular frame (see Theorem 4.4),

$$\begin{aligned} I = \bigvee \{ K \mid K \prec I\} = \bigvee \{ K \mid K^* \vee I = A\}. \end{aligned}$$

We show that \(I = \bigvee \{ \lnot J \mid J \vee I = A\}\). The right-to-left inclusion is clear. For the left-to-right inclusion it is sufficient to show that if \(K^* \vee I = A\), then \(K \le \lnot J\) for some J with \(J \vee I = A\). But if we set \(J = K^*\), then \(K \subseteq K^{**} = J^* \le \lnot J\). Thus, \(I = \bigvee \{ \lnot J \mid J \vee I = A\}\), and hence \(x_I = \bigvee \{ x_{\lnot J} \mid J \vee I = A\}\).

(2) Each element of \(D(\mathbb {R}[B])\) is a join from \(\mathbb {R}[B]\). A nonnegative element of \(\mathbb {R}[B]\) can be written in the form \(r_1 x_{b_1} + \cdots + r_n x_{b_n} = r_1 x_{b_1} \vee \cdots \vee r_n x_{b_n}\) for some \(0 \le r_i \in \mathbb {R}\) and \(b_1, \dots , b_n \in B\) with \(b_i \wedge b_j = 0\) whenever \(i \ne j\) (see Remark 3.14). Since each \(b \in B\) is a finite join of elements of the form \(J \wedge \lnot I\) with \(I, J \in \mathsf{{Arch}}(A)\), we may write a nonnegative element of \(\mathbb {R}[B]\) as a join of elements of the form \(r(x_J \wedge x_{\lnot I})\). Thus, by (1), if \(0 \le f \in D(\mathbb {R}[B])\), we may write f as a join of elements of the form \(rx_{\lnot I}\) with \(I \in \mathsf{{Arch}}(A)\).

(3) By Remark 3.14(2,3), \(x_I + x_{\lnot I} = x_I \vee x_{\lnot I} = 1\). Therefore, by Remark 3.15(1),

$$\begin{aligned} f + t = \bigvee \{ t + r_I x_{\lnot I} \mid I \in \mathsf{{Arch}}(A) \} = \bigvee \{ (t + r_I)x_{\lnot I} + tx_I \mid I \in \mathsf{{Arch}}(A) \}. \end{aligned}$$

Because \(x_{\lnot I} \wedge x_I = 0\), Remark 3.15(9) implies \((t + r_I)x_{\lnot I} \wedge tx_I = 0\), so

$$(t + r_I)x_{\lnot I} + tx_I = (t + r_I)x_{\lnot I} \vee tx_{I}.$$

 Thus, by (1),

$$\begin{aligned} f + t= & {} \bigvee \{ (t + r_I)x_{\lnot I} \vee tx_I \mid I \in \mathsf{{Arch}}(A) \} \\= & {} \bigvee \{ (t + r_I)x_{\lnot I} \vee tx_{\lnot J} \mid I, J \in \mathsf{{Arch}}(A), I \vee J = A\}. \end{aligned}$$

Now, \(t \le t + r_{J}\), so \(tx_{\lnot J} \le (t+r_{J})x_{\lnot J}\). Consequently, \(f + t = \bigvee \{ (t + r_I)x_{\lnot I} \mid I \in \mathsf{{Arch}}(A)\}\).

Remark A.4

Let \(A\in \varvec{ ba \ell }\). For \(S\subseteq A\) we let \([{S}]\) be the \(\ell\)-ideal of A generated by S. It is well known (see, e.g., [34, p. 96]) that

$$\begin{aligned}{}[{S}] = \{ x \in A : |x| \le \sum_{i=1}^{k} n_{i} |a_{i}|\; \text{for some}\; n_1, \ldots, n_{k} \ge 1\; \text{and}\; a_{1}, \ldots, a_{k} \in S\}. \end{aligned}$$

If \(S = \{a\}\), we write \([{a}]\) for \([{S}]\).

Let \(A \in \varvec{ ba \ell }\). We recall that \(X_A = \mathsf{{Arch}}(A) \setminus \{A\}\), that \(X_A\) is ordered by inclusion, and that \(X_A\) is viewed as an Alexandroff space.

Lemma A.5

Let \(A \in \varvec{ ba \ell }\).

  1. (1)

    If \(a, b \in A\) with \(a < b\) and \(b - a \in \mathbb {R}\), then \(\langle {b^+, a^-}\rangle = A\).

  2. (2)

    If \(I,J \in X_A\) with \(I \not \subseteq J\), then there is \(K \in X_A\) with \(J \subseteq K\) and \(K + I = A\).

Proof

(1) Set \(I =\langle {b^+, a^-}\rangle\). Since \(0 \le a^+ \le b^+\), we have \(a^+ \in I\), so \(a = a^+ - a^- \in I\). Also, as \(0 \le b^- \le a^-\), we have \(b^- \in I\), and so \(b \in I\). Thus, \(b - a \in I\). Since \(b-a\) is a nonzero real number, it is a unit in A, and hence \(I = A\).

(2) Since \(I \not \subseteq J\) there is \(a \in I\) with \(a \notin J\). Because J is archimedean, by Proposition 4.8, there is \(n\ge 1\) with \((n|a|-1)^+ \notin J\). Let \(K = J \vee \langle {(n|a|-1)^-}\rangle\). Then \(J \subseteq K\), and \(I \vee K = A\) by (1). We show that \(K \in X_A\). Otherwise \(1 = x + y\) with \(0 \le x, y\), \(x \in J\), and \(y \in \langle {(n|a|-1)^-}\rangle\) by Lemma A.2(1,4). We claim that \(y (n|a| - 1)^+ = 0\). To see this, we set \(b = n|a|-1\). Since \(y \in \langle {b^-}\rangle\), we have \((y-1/p)^+ \in [{b^-}]\) for each \(p \ge 1\) by Proposition 4.8. Therefore, by Remark A.4, for each p there is m with \((y-1/p)^+ \le mb^-\). Thus, \(0 \le (y-1/p)^+ b^+ \le mb^- b^+ = 0\) by Remark 3.15(7), and so \((y - 1/p)^+ b^+ = 0\). Because \(y-1/p \le (y-1/p)^+\), we have

$$(y-1/p)b^+ \le (y-1/p)^+ b^+ = 0,$$

so \(yb^+ \le (1/p) b^+\), which yields \(pyb^+ \le b^+\). Since this is true for all \(p \ge 1\), it follows that \(yb^+ = y(|n|a-1)^+ = 0\) as A is archimedean. This verifies the claim. Therefore, \((n|a| - 1)^+ = (n|a| - 1)^+ (x + y) = (n|a| - 1)^+ x\), and so \((n|a| - 1)^+ \in J\), which is a contradiction. Thus, \(K \in X_A\).

Lemma A.6

Let \(A \in \varvec{ ba \ell }\), B be the free boolean extension of \(\mathsf{{Arch}}(A)\), \(I \in X_A\), and \(0 \le f,g \in D(\mathbb {R}[B])\). Suppose that whenever \(tx_{\lnot I} \le f\) for \(0 \le t \in \mathbb{R}\), there is \(K \in X_A\) with \(I \subseteq K\) and \(tx_{\lnot K} \le g\). Then \(f \le g\).

Proof

Suppose that \(f \not\le g\). Then \(0 \not\le g - f\), so \((g-f)^{-} \ne 0\). By Lemma 5.7(1), there are \(r>0\) and \(I \in X_{A}\) with \(rx_{\lnot I} \le (g-f)^{-}\). By Remark 3.15(7), 

$$0 \le rx_{\lnot I}(g-f)^+ \le (g-f)^+ (g-f)^- = 0$$

which yields \(rx_{\lnot I}(g-f)^{+} = 0\). Therefore,

$$0 = rx_{\lnot I}[(g-f)\vee 0] = r(gx_{\lnot I} - fx_{\lnot I}) \vee 0.$$

Since \(0 < r\), we have \(g x_{\lnot I} -f x_{\lnot I} \le 0\), and hence \(g x_{\lnot I} \le f x_{\lnot I}\). Consequently, because \(r x_{\lnot I} \le (g-f)^{-}\) and \(x_{\lnot I}\) is an idempotent,

$$r x_{\lnot I} \le (g-f)^{-} x_{\lnot I} = [(f-g)\vee 0] x_{\lnot I} = (f x_{\lnot I} -g x_{\lnot I} )\vee 0 = f x_{\lnot I} -g x_{\lnot I}.$$

This gives \((r+g) x_{\lnot I} = r x_{\lnot I} + g x_{\lnot I} \le f x_{\lnot I}\). Note that if \(J \supseteq I\), then \(x_{\lnot J} \le x_{\lnot I}\). Therefore, multiplying the equation above by \(x_{\lnot J}\) and using Definition 3.10, we have

$$(r+g)x_{\lnot J} \le fx_{\lnot J} \textrm{ for each } J \in X_{A}, J \supseteq I.$$
(A.1)

We use this to obtain a contradiction to\(f \not\le g\). Since \(0 \le f\), we have

$$r x_{\lnot I} \le (g-f)^{-} = (f-g)^{+} \le f.$$

By hypothesis, there is \(K_{1} \in X_{A}\) with \(K_{1} \supseteq I\) and \(rx_{\lnot K_1} \le g\), so \(rx_{\lnot K_1} \le gx_{\lnot K_1}\). Thus, as \((r+g)x_{\lnot K_{1}} \le fx_{\lnot K_{1}}\) by Equation (A.1), we have \(2rx_{\lnot K_{1}} \le fx_{\lnot K_{1}} \le f\). From this the hypothesis yields \(K_{2} \in X_{A}\) with \(K_2 \supseteq K_1\) and \(2rx_{\lnot K_2} \le g\). Using Equation (A.1) again yields \(3rx_{\lnot K_2} \le f\). Continuing, for each \(n \ge 1\) there is \(K_{n} \in X_{A}\) with \((n+1)rx_{\lnot K_n} \le f\). Multiplying this by \(x_{\lnot K_n}\) gives \((n+1)rx_{\lnot K_n} \le fx_{\lnot K_n}\). Since \(D(\mathbb{R}[B])\) is bounded, there is \(m > 0\) with\(f \le m\). Then \(fx_{\lnot K_n} \le mx_{\lnot K_n}\), and so \((n+1)rx_{\lnot K_n} \le mx_{\lnot K_n}\). By Remark 3.13(1), this forces \((n+1)r \le m\) for each \(n \ge 1\). The obtained contradiction shows that \(f \le g\).

We arrive at our final auxiliary lemma, Item (2) of which has the most involved proof.

Lemma A.7

Let \(A \in \varvec{ ba \ell }\), \(0 \le a \in A\), and \(I \in X_A\). Set \(s_{I} = \sup \{r \mid (a-r)^{-} \in I \}\)

  1. (1)

    \((a - s_I)^- \in I\).

  2. (2)

    \(rx_{\lnot I} \le \alpha (a)\) iff \((a-r)^- \in I\).

  3. (3)

    \(s_I = \sup \{ r \mid rx_{\lnot I} \le \alpha (a) \}\) and \(I \vee \langle {(a - s_I)^+}\rangle \ne A\).

Proof

(1) If \((a-r)^- \in I\), then \(a + I \ge r + I\) in A/I by Remark 4.7(2). We use this to show that \((a - s_I)^- \in I\). For each \(n \ge 1\) there is r with \((a-r)^- \in I\) and \(s_I - 1/n \le r\). Therefore, \((s_I - 1/n) + I \le r + I \le a + I\), and so \((s_I - a) + I \le 1/n + I\). Since this is true for all n, we have \((s_I-a) + I \le 0 + I\) as A/I is archimedean. Thus, \(s_I + I\le a + I\). Applying Remark 4.7(2) again yields \((a-s_I)^- \in I\).

(2) If \((a-r)^- \in I\), then \(rx_{\lnot I} \le \alpha (a)\) by Lemma 5.7(1). Conversely, suppose that \(rx_{\lnot I} \le \alpha (a)\). The result is clear if \(r \le 0\) since then \((a-r)^- = 0 \in I\), so assume \(r > 0\). By (1) and Lemma 5.7(1), we may write \(\alpha (a) = \bigvee \{ s_J x_{\lnot J} \mid J \in \mathsf{{Arch}}(A)\}\), where \(s_J\) is given in (1). To show \((a-r)^- \in I\) we then need to show \(r \le s_I\). We have \(rx_{\lnot I} \le \bigvee \{ s_J x_{\lnot J} \mid J \in \mathsf{{Arch}}(A) \}\) and \(rx_{\lnot I} \le r\). Therefore,

$$\begin{aligned} rx_{\lnot I}\le & {} \bigvee \{ s_Jx_{\lnot J} \mid J \in \mathsf{{Arch}}(A)\} \wedge r \\= & {} \bigvee \{ s_Jx_{\lnot J} \wedge r \mid J \in \mathsf{{Arch}}(A)\} \\= & {} \bigvee \{ \min (s_J, r)x_{\lnot J} \mid J \in \mathsf{{Arch}}(A) \} \end{aligned}$$

by Remark 3.15(2) and Lemma A.1(1). To simplify notation set \(t_J = \min (s_J, r)\). Then \((a - t_J)^- \le (a - s_J)^-\), so \((a - t_J)^- \in J\). From Remark 3.14(3) we get

$$\begin{aligned} r = rx_I \vee rx_{\lnot I} \le rx_I \vee \bigvee \{ t_Jx_{\lnot J} \mid J \in \mathsf{{Arch}}(A)\} \le r \end{aligned}$$

since the join is bounded by r, so equality holds throughout. Fix \(\varepsilon > 0\). Then

$$\begin{aligned} r &= \left( rx_I \vee \bigvee \{ t_Jx_{\lnot J} \mid J \in \mathsf{{Arch}}(A)\}\right) \vee (r - \varepsilon ) \\ &= rx_I \vee \bigvee \{ t_Jx_{\lnot J} \vee (r - \varepsilon ) \mid J \in \mathsf{{Arch}}(A)\}. \end{aligned}$$

If \(t_J \le r - \varepsilon\), then \(t_J x_{\lnot J} \le r - \varepsilon\). Therefore,

$$\begin{aligned} r &= rx_I \vee \bigvee \{ t_Jx_{\lnot J} \vee (r - \varepsilon ) \mid J \in \mathsf{{Arch}}(A)\} \\ &= \left( rx_I \vee \bigvee \{t_Jx_{\lnot J} \mid r - \varepsilon < t_J \}\right) \vee (r-\varepsilon ). \end{aligned}$$

Thus, we have \(rx_I \vee \bigvee \{ t_Jx_{\lnot J} \mid r - \varepsilon < t_J \} = r\) by Lemma A.1(2). Multiplying both sides by \(r^{-1}\) yields \(x_I \vee \bigvee \{ r^{-1}t_Jx_{\lnot J} \mid r - \varepsilon < t_J \} = 1\). Consequently, \(x_{\lnot I} \le \bigvee \{ r^{-1}t_Jx_{\lnot J} \mid r - \varepsilon < t_J\}\) by Remark 3.13(2), and hence \(rx_{\lnot I} \le \bigvee \{ t_Jx_{\lnot J} \mid r - \varepsilon < t_J\}\). Let \(S = \{ J \in \mathsf{{Arch}}(A) \mid r - \varepsilon < t_J \}\). We then have \(rx_{\lnot I} \le \bigvee \{ t_J x_{\lnot J} \mid J \in S\}\) and \((a - (r-\varepsilon ))^- \in J\) for each \(J \in S\) since \((a - (r - \varepsilon ))^- \le (a - t_J)^-\) and \((a - t_J)^- \in J\). Because \(t_J \le r\) for each J by definition and \(r > 0\), we have \(rx_{\lnot I} \le \bigvee \{ rx_{\lnot J} \mid J \in S\}\), so \(x_{\lnot I} \le \bigvee \{ x_{\lnot J} \mid J \in S\}\). Let \(K=\bigwedge_{\mathsf{Arch}(A)} S\). Then \(K = \bigcap S\). If \(J \in S\), then \(K \subseteq J\), so \(\neg J \le \neg K\) in B, and hence \(x_{\neg J} \le x_{\neg K}\). Therefore, \(x_{\neg I} \le x_{\neg K}\). This yields \(\neg I \le \neg K\), so \(\bigcap S=K \subseteq I\). As \((a-(r-\varepsilon ))^- \in J\) for each \(J \in S\), we see that \((a-(r-\varepsilon ))^- \in I\). Since this is true for all \(\varepsilon\), we have \(a + I \ge (r - \varepsilon ) + I\) for each \(\varepsilon\), so \(a + I \ge r + I\) because I is archimedean. Thus, \((a-r)^- \in I\).

(3) We write \(s = s_I\) for convenience. The first part of the statement follows from (1) and (2). Suppose that \(I \vee \langle {(a-s)^+}\rangle = A\). Then \(I + [{(a-s)^+}] = A\) by Lemma A.2(4). By Lemma A.2(1) and Remark A.4, there are \(0 \le x,y\) with \(x \in I\), \(y \le n(a-s)^+\) for some n, and \(x + y =1\). Then \(1/n - y/n = x/n \in I\) and \(1/n - y/n \ge 1/n - (a-s)^+\). Therefore, \(1/n - y/n \ge (1/n - (a-s)^+) \vee 0\), so \((1/n - (a-s)^+)^+ \in I\). Using Items (3), (1), (2), and (4) of Remark 3.15, we have

$$\begin{aligned} \left( 1/n - (a-s)^+\right) ^{+}&= \left( 1/n - ((a-s)\vee 0)\right)^{+} = \left( 1/n + ((s-a) \wedge 0)\right) ^+ \\ &= \left( (s + 1/n - a) \wedge 1/n\right) \vee 0 \\ &= \left( (s + 1/n - a) \vee 0\right) \wedge 1/n \\ &= (a - (s + 1/n))^- \wedge 1/n. \end{aligned}$$

Thus, \((a - (s + 1/n))^- \wedge 1/n \in I\). Since \(A/I \in \boldsymbol{\mathit{ba}\ell}\) and \(1/n\) is a weak order-unit, \((a-(s+1/n))^- \in I\). This is a contradiction to the definition of \(s = s_I\). Thus, \(I \vee \langle {(a-s_I)^+}\rangle \ne A\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhanishvili, G., Carai, L. & Morandi, P. A Point-Free Approach to Canonical Extensions of Boolean Algebras and Bounded Archimedean \(\ell\)-Algebras. Order 40, 257–287 (2023). https://doi.org/10.1007/s11083-022-09609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-022-09609-3

Keywords

Navigation