Skip to main content
Log in

Wide-bandgap Cesium-Formamidinium-Based Perovskite for Possible Indoor Applications: TCAD Simulation Study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study investigates the potential of Cesium−formamidinium-based (CsyFA1−yPb(IxBr1−x)3) perovskite materials as promising candidates for efficient and stable perovskite solar cells (PSCs), that can be tailored for indoor applications. These materials offer the unique advantage of simultaneously stabilizing photoactive compositional phase transitions and enhancing thermal stability, making them well-suited for indoor environments. The optical band gaps of Cesium−formamidinium, ranging from 1.5 to 1.8 eV, can be engineered to align with the spectrum of light sources commonly used indoors. Therefore, this study directs into the design and simulation of Cesium-Formamidinium-Based PSCs, with a specific emphasis on optimizing their performance under indoor LED illumination. Parameter manipulation related to the Hole Transport Layer (HTL) and Electron Transport Layer (ETL) is utilized to establish optimal band alignment in order to reduce recombination losses and boost power conversion efficiency. A co-design approach between the ETL and HTL is introduced, enabling precise engineering of interfaces, and optimizing charge transport and collection efficiency. This research presents an optimal design with a conduction band minimum (VBM) energy level of 4.05 eV for the ETL and a valence band maximum (VBM) energy level of 5.15 eV for the HTL, resulting in a power conversion efficiency (PCE) of 25.00%, and an open-circuit voltage (Voc) of 0.939 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data will be made available on reasonable request.

References

  • Abdelaziz, W., Zekry, A., Shaker, A., Abouelatta, M.: Numerical study of organic graded bulk heterojunction solar cell using SCAPS simulation. Sol. Energy 211, 375–382 (2020)

    ADS  Google Scholar 

  • Aeberhard, U., Schiller, A., Masson, Y., Zeder, S.J., Blülle, B., Ruhstaller, B.: Analysis and optimization of organic tandem solar cells by full opto-electronic simulation. Front. Photonics 3, 891565 (2022)

    Google Scholar 

  • Ahmed, A., Riaz, K., Mehmood, H., Tauqeer, T., Ahmad, Z.: Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Opt. Mater. 105, 109897 (2020)

    Google Scholar 

  • Akhil, S., Akash, S., Pasha, A., Kulkarni, B., Jalalah, M., Alsaiari, M., Harraz, F.A., Balakrishna, R.G.: Review on perovskite silicon tandem solar cells: status and prospects 2T, 3T and 4T for real world conditions. Mater. Des. 211, 110138 (2021)

    Google Scholar 

  • Alsaggaf, S., Ashraf, R.S., Purushothaman, B., Chaturvedi, N., McCulloch, I., Laquai, F., Khan, J.I.: Efficiency limits in wide‐bandgap Ge‐containing donor polymer: nonfullerene acceptor bulk heterojunction solar cells. Physica status solidi (RRL)–Rapid Res. Lett. 15(12), 2100206 (2021)

  • Arai, R., Furukawa, S., Sato, N., Yasuda, T.: Organic energy-harvesting devices achieving power conversion efficiencies over 20% under ambient indoor lighting. J. Mater. Chem. A 7(35), 20187–20192 (2019)

    Google Scholar 

  • Balawi, A.H., Kan, Z., Gorenflot, J., Guarracino, P., Chaturvedi, N., Privitera, A., Liu, S., Gao, Y., Franco, L., Beaujuge, P., Laquai, F.: Quantification of photophysical processes in all-polymer bulk heterojunction solar cells. Solar RRL 4(6), 2000181 (2020)

    Google Scholar 

  • Beal, R.E., Slotcavage, D.J., Leijtens, T., Bowring, A.R., Belisle, R.A., Nguyen, W.H., Burkhard, G.F., Hoke, E.T., McGehee, M.D.: Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7(5), 746–751 (2016)

    Google Scholar 

  • Behrendt, F.: Cycling the smart and sustainable city: analyzing EC policy documents on internet of things, mobility and transport, and smart cities. Sustainability 11(3), 763 (2019)

    Google Scholar 

  • Braly, I.L., Stoddard, R.J., Rajagopal, A., Uhl, A.R., Katahara, J.K., Jen, A.K.Y., Hillhouse, H.W.: Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2(8), 1841–1847 (2017)

    Google Scholar 

  • Chae, Y.T., Kim, J., Park, H., Shin, B.: Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl. Energy 129, 217–227 (2014)

    ADS  Google Scholar 

  • Chen, C.Y., Chang, J.H., Chiang, K.M., Lin, H.L., Hsiao, S.Y., Lin, H.W.: Perovskite photovoltaics for dim-light applications. Adv. Func. Mater. 25(45), 7064–7070 (2015)

    Google Scholar 

  • Chen, M., Kapil, G., Li, Y., Kamarudin, M.A., Baranwal, A.K., Nishimura, K., Sahamir, S.R., Sanehira, Y., Li, H., Ding, C., Zhang, Z.: Large synergy effects of doping, a site substitution, and surface passivation in wide bandgap Pb-free ASnI2Br perovskite solar cells on efficiency and stability enhancement. J. Power. Sources 520, 230848 (2022)

    Google Scholar 

  • Cornaro, C., Bartocci, S., Musella, D., Strati, C., Lanuti, A., Mastroianni, S., Penna, S., Guidobaldi, A., Giordano, F., Petrolati, E., Brown, T.M.: Comparative analysis of the outdoor performance of a dye solar cell mini-panel for building integrated photovoltaics applications. Prog. Photovoltaics Res. Appl. 23(2), 215–225 (2015)

    Google Scholar 

  • Dagar, J., Castro-Hermosa, S., Lucarelli, G., Cacialli, F., Brown, T.M.: Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy 49, 290–299 (2018)

    Google Scholar 

  • De Rossi, F., Pontecorvo, T., Brown, T.M.: Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 156, 413–422 (2015)

    ADS  Google Scholar 

  • De Wolf, S., Holovsky, J., Moon, S.J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)

    Google Scholar 

  • Enrichi, F., Righini, G. (Eds).: Solar Cells and Light Management: Materials, Strategies and Sustainability. Elsevier (2019)

  • Green, M.A.: Commercial progress and challenges for photovoltaics. Nat. Energy 1(1), 1–4 (2016)

    ADS  MathSciNet  Google Scholar 

  • Green, M.A., Dunlop, E.D., Siefer, G., et al.: Solar cell efficiency tables (version 61). Prog Photovolt Res Appl. 31(1), 3–16 (2023)

    Google Scholar 

  • Gu, X., Lai, X., Zhang, Y., Wang, T., Tan, W.L., McNeill, C.R., Liu, Q., Sonar, P., He, F., Li, W., Shan, C.: Organic solar cell with efficiency over 20% and VOC exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Adv. Sci. 9(28), 2200445 (2022)

  • Haque, K.A., Baten, M.Z.: On the prospect of CZTSSe-based thin film solar cells for indoor photovoltaic applications: a simulation study. AIP Adv. 9(5) (2019)

  • Jahandar, M., Kim, S., Lim, D.C.: Indoor organic photovoltaics for self-sustaining IoT devices: progress, challenges and practicalization. Chemsuschem 14(17), 3449–3474 (2021)

    Google Scholar 

  • Jan, S.T., Noman, M.: Comprehensive analysis of heterojunction compatibility of various perovskite solar cells with promising charge transport materials. Sci. Rep. 13(1), 19015 (2023a)

    ADS  Google Scholar 

  • Jan, S.T., Noman, M.: Analyzing the effect of planar and inverted structure architecture on the properties of MAGeI3 perovskite solar cells. Energ. Technol. 11(11), 2300564 (2023b)

    Google Scholar 

  • Kang, R., Park, S., Jung, Y.K., Lim, D.C., Cha, M.J., Seo, J.H., Cho, S.: High-efficiency polymer homo-tandem solar cells with carbon quantum-dot-doped tunnel junction intermediate layer. Adv. Energy Mater. 8(10), 1702165 (2018)

    ADS  Google Scholar 

  • Kim, S., Jahandar, M., Jeong, J.H., Lim, D.C.: Recent progress in solar cell technology for low-light indoor applications. Curr. Altern. Energy 3(1), 3–17 (2019)

    Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Google Scholar 

  • Lanz, T., Ruhstaller, B., Battaglia, C., Ballif, C.:. Extended light scattering model incorporating coherence for thin-film silicon solar cells. J. Appl. Phys. 110(3) (2011)

  • Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    ADS  Google Scholar 

  • Lee, J.W., Kim, D.H., Kim, H.S., Seo, S.W., Cho, S.M., Park, N.G.: Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015)

    Google Scholar 

  • Lee, H.K.H., Barbé, J., Meroni, S.M., Du, T., Lin, C.T., Pockett, A., Troughton, J., Jain, S.M., De Rossi, F., Baker, J., Carnie, M.J.: Outstanding indoor performance of perovskite photovoltaic cells–effect of device architectures and interlayers. Solar RRL 3(1), 1800207 (2019)

    Google Scholar 

  • Li, Z., Yang, M., Park, J.S., Wei, S.H., Berry, J.J., Zhu, K.: Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016)

    Google Scholar 

  • Li, M., Igbari, F., Wang, Z.K., Liao, L.S.: Indoor thin-film photovoltaics: progress and challenges. Adv. Energy Mater. 10(28), 2000641 (2020)

    Google Scholar 

  • Li, K., Yang, X., Lu, Y., Xue, J., Lu, S., Zheng, J., Chen, C., Tang, J.: Fabrication and optimization of CdSe solar cells for possible top cell of silicon-based tandem devices. Adv. Energy Mater. 12(26), 2200725 (2022)

    Google Scholar 

  • Mathews, I., Kantareddy, S.N., Buonassisi, T., Peters, I.M.: Technology and market perspective for indoor photovoltaic cells. Joule 3(6), 1415–1426 (2019)

    Google Scholar 

  • Matiko, J.W., Grabham, N.J., Beeby, S.P., Tudor, M.J.: Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 012002 (2013)

    ADS  Google Scholar 

  • McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016)

    ADS  Google Scholar 

  • Minoli, D., Sohraby, K., Kouns, J.: IoT security (IoTSec) considerations, requirements, and architectures. In: 2017 14th IEEE annual consumer communications & networking conference (CCNC), pp. 1006–1007. IEEE (2017)

  • Montenegro-Marin, C.E., Gaona-García, P.A., Prieto, J.D., Nieto Acevedo, Y.V.: Analysis of security mechanisms based on clusters IoT environments. Int. J. Interact. Multimed. Artif. Intell. 4(3), 55–60 (2017)

    Google Scholar 

  • Neukom, M.: Comprehensive characterization and modelling of operation mechanisms in third generation solar cells. University of Augsburg, Augsburg, Germany (2019)

    Google Scholar 

  • Neukom, M.T., Züfle, S., Ruhstaller, B.: Reliable extraction of organic solar cell parameters by combining steady-state and transient techniques. Org. Electron. 13(12), 2910–2916 (2012)

    Google Scholar 

  • Neukom, M.T., Schiller, A., Züfle, S., Knapp, E., Ávila, J., Pérez-del-Rey, D., Dreessen, C., Zanoni, K.P., Sessolo, M., Bolink, H.J., Ruhstaller, B.: Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain. ACS Appl. Mater. Interfaces 11(26), 23320–23328 (2019)

    Google Scholar 

  • Okil, M., Shaker, A., Ahmed, I.S., Abdolkader, T.M., Salem, M.S.: Design and analysis of Sb2S3/Si thin film tandem solar cell. Sol. Energy Mater. Sol. Cells 253, 112210 (2023)

    Google Scholar 

  • Pecunia, V., Occhipinti, L.G., Hoye, R.L.: Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11(29), 2100698 (2021)

    Google Scholar 

  • Pindolia, G., Shinde, S.M.: Effect of organic charge transport layers on unleaded KSnI3 based perovskite solar cell. Results Opt. 12, 100469 (2023)

    Google Scholar 

  • Qirong, Z., Bao, Z., Yongmao, H., Liang, L., Zhuoqi, D., Zaixin, X., Xiaobo, Y.: A study on numerical simulation optimization of perovskite solar cell based on CuI and C60. Mater. Res. Express 9(3), 036401 (2022)

    Google Scholar 

  • Qiu, W., Ray, A., Jaysankar, M., Merckx, T., Bastos, J.P., Cheyns, D., Gehlhaar, R., Poortmans, J., Heremans, P.: An interdiffusion method for highly performing cesium/formamidinium double cation perovskites. Adv. Func. Mater. 27(28), 1700920 (2017)

    Google Scholar 

  • Raoui, Y., Ez-Zahraouy, H., Kazim, S., Ahmad, S.: Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. J. Energy Chem. 54, 822–829 (2021)

    Google Scholar 

  • Ravishankar, S., Liu, Z., Rau, U., Kirchartz, T.: Multilayer capacitances: how selective contacts affect capacitance measurements of perovskite solar cells. PRX Energy 1(1), 013003 (2022)

    Google Scholar 

  • Saikia, D., Bera, J., Betal, A., Sahu, S.: Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt. Mater. 123, 111839 (2022)

    Google Scholar 

  • Salem, M.S., Shaker, A., Othman, M.S., Al-Bagawia, A.H., Fedawy, M., Aleid, G.M.: Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt. Mater. 123, 111880 (2022)

    Google Scholar 

  • Sfar, A.R., Natalizio, E., Challal, Y., Chtourou, Z.: A roadmap for security challenges in the internet of things. Digit. Commun. Netw. 4(2), 118–137 (2018)

    Google Scholar 

  • Sharif, R., Khalid, A., Ahmad, S.W., Rehman, A., Qutab, H.G., Akhtar, H.H., Mahmood, K., Afzal, S., Saleem, F.: A comprehensive review on the current progress and material advances in perovskite solar cells. Nanoscale Adv. 5, 3803–3833 (2023)

    ADS  Google Scholar 

  • Semiconducting Thin Film Optics Simulator (SETFOS) Version 5.3 by Fluxim AG, Switzerland. Available online: http://www.fluxim.com. Accessed 10 July 2023

  • Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    ADS  Google Scholar 

  • Tress, W.: Perovskite solar cells on the way to their radiative efficiency limit–insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7(14), 1602358 (2017)

    Google Scholar 

  • Uddin, A., Islam, A., Yang, X., Li, C.: Perovskite solar cells: materials, technologies, and challenges. J. Mater. Chem. A 8(21), 10403–10422 (2020)

    Google Scholar 

  • Wang, Z., Lin, Q., Wenger, B., Christoforo, M.G., Lin, Y.H., Klug, M.T., Johnston, M.B., Herz, L.M., Snaith, H.J.: High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 3(10), 855–861 (2018)

    ADS  Google Scholar 

  • Warren, E.L., Deceglie, M.G., Rienäcker, M., Peibst, R., Tamboli, A.C., Stradins, P.: Maximizing tandem solar cell power extraction using a three-terminal design. Sustain. Energy Fuels. 2(6), 1141–1147 (2018)

    Google Scholar 

  • Werner, J.: Perovskite/silicon tandem solar cells: toward affordable ultra-high efficiency photovoltaics? Ph.D. Thesis (No. 8659). EPFL (2018)

  • Werner, J., Nogay, G., Sahli, F., Yang, T.C.J., Bräuninger, M., Christmann, G., Walter, A., Kamino, B.A., Fiala, P., Löper, P., Nicolay, S.: Complex refractive indices of cesium–formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3(3), 742–747 (2018)

  • White, B.E., Jr.: Beyond the battery. Nat. Nanotechnol. 3(2), 71–72 (2008)

    ADS  Google Scholar 

  • Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Grätzel, C., Zakeeruddin, S.M., Röthlisberger, U., Grätzel, M.: Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016)

    Google Scholar 

  • Zekry, A., Shaker, A., Salem, M.: Solar cells and arrays: principles, analysis, and design. In: Advances in renewable energies and power technologies, pp. 3–56. Elsevier (2018)

  • Zhang, F., Yang, B., Li, Y., Deng, W., He, R.: Extra long electron–hole diffusion lengths in CH 3 NH 3 PbI 3–x Cl x perovskite single crystals. J. Mater. Chem. C 5(33), 8431–8435 (2017)

    Google Scholar 

  • Zhang, X., Li, T., Hu, C., Fu, Z., Lin, J., Cheng, Z., Wu, J., Qi, Y., Ruan, Y., Huang, L.: Investigation of efficient all-inorganic HTL-free CsGeI3 perovskite solar cells by device simulation. Mater. Today Commun. 34, 105347 (2023)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through project number RG-23 074.

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through project number RG-23 074. University of Ha’il, RG-23 074.

Author information

Authors and Affiliations

Authors

Contributions

Marwa S. Salem, Ahmed Shaker, and Mohamed Abouelatta wrote the main manuscript text. Marwa S. Salem, Ahmed Shaker, Walid Zein, Arwa N. Aledaily, and Muath Alkadi performed the simulation and prepared the figures. Abdelhalim Zekry and Christian Gontrand performed conceptualization and supervision. All authors shared in methodology, and validation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Shaker.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest reported in this paper.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, M.S., Shaker, A., Abouelatta, M. et al. Wide-bandgap Cesium-Formamidinium-Based Perovskite for Possible Indoor Applications: TCAD Simulation Study. Opt Quant Electron 56, 1054 (2024). https://doi.org/10.1007/s11082-024-07000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-07000-7

Keywords

Navigation