Skip to main content
Log in

Impact of noise on data routing in flying Ad hoc networks

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Routing protocol plays a vital role in FANETs (Flying Ad-Hoc Networks) by facilitating communication between nodes and enabling the establishment of efficient routes. In a FANET, where the nodes can be drones, airplanes or other unmanned aerial vehicles, mobility is a key aspect that requires proper route management. Among the most well-known and widely used routing protocols in different types of networks is AODV (Ad hoc On-Demand Distance Vector). AODV is a reactive routing protocol specially designed for ad hoc networks, including FANET networks. It offers an efficient solution to establish dynamic routes between nodes when direct communication between a source node and the destination node is not possible. However, most of the studies available in the literature mainly focus on the comparison between different routing protocols. They often neglect to examine in detail the performance of the same routing protocol under different circumstances or conditions. This paper offers a thorough investigation into the influence of noise on the AODV protocol in FANET networks. Furthermore, we introduce a proposed enhancement to the AODV protocol, specifically designed to improve its ability to withstand the effects of noise. Additionally, we present simulation results that evaluate the performance of AODV in terms of throughput, End-to-End Delay, Packet Delivery Ratio (PDR), and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adarbah, H., Linfoot, S., Arafeh, B., Duffy, A.: Impact of the noise level on the route discovery mechanism in noisy manets. In: 1st IEEE Global Conference on Consumer Electronics 2012, GCCE 2012. 1st IEEE Global Conference on Consumer Electronics 2012, GCCE 2012, pp. 699–703 (2012). https://doi.org/10.1109/GCCE.2012.6379958 . 1st IEEE Global Conference on Consumer Electronics, GCCE 2012 ; Conference date: 02-10-2012 Through 05-10-2012

  • Al-Zahrani, F.A.: On modeling optimizations and enhancing routing protocols for wireless multihop networks. IEEE Access 8, 68953–68973 (2020)

    Article  Google Scholar 

  • AlKhatieb, A., Felemban, E., Naseer, A.: Performance evaluation of ad-hoc routing protocols in Fanets. 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 1–6 (2020). IEEE

  • AlKhatieb, A., Felemban, E., Naseer, A.: Performance evaluation of ad-hoc routing protocols in Fanets. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 1–6 (2020). IEEE

  • Bashir, M.N., Iqbal, S., Yusof, K.M.: Design principles for cooperative relaying on uavs-based fanet. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET), pp. 1–6 (2022)

  • Ben bezziane, M., Korichi, A., Kerrache, C.A., Fekair, M.A.: Rcvc: Rsu-aided cluster-based vehicular clouds architecture for urban areas. Electronics 10(2), 193 (2021)

    Article  Google Scholar 

  • Ben Bezziane, M., Korichi, A., Fekair, M.E.A., Azzaoui, N.: Fr-vc: A novel approach to finding resources in the vehicular cloud. In: Innovative and Intelligent Technology-Based Services For Smart Environments - Smart Sensing and Artificial Intelligence, p. 7 (2021)

  • Bhardwaj, V., Kaur, N.: Seedrp: a secure energy efficient dynamic routing protocol in Fanets. Wirel. Pers. Commun. 120(2), 1251–1277 (2021)

    Article  Google Scholar 

  • Brik, B., Lagraa, N., Lakas, A., Cheddad, A.: Ddgp: distributed data gathering protocol for vehicular networks. Veh. Commun. 4, 15–29 (2016). https://doi.org/10.1016/j.vehcom.2016.01.001

    Article  Google Scholar 

  • Brik, B., Lagraa, N., Lakas, A., Ghamri-Doudane, Y.: Rcs-vc: renting out and consuming services in vehicular clouds based on lte-a. In: 2015 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–6 (2015). https://doi.org/10.1109/GIIS.2015.7347174

  • Brik, B., Lagraa, N., Lakas, A., Ghamri-Doudane, Y.: Finding a public bus to rent out services in vehicular clouds. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–7 (2015). https://doi.org/10.1109/VTCFall.2015.7390952

  • Brik, B., Lagraa, N., Cherroun, H., Lakas, A.: Token-based clustered data gathering protocol(tcdgp) in vehicular networks. In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1070–1074 (2013). https://doi.org/10.1109/IWCMC.2013.6583705

  • Bruzgiene, R., Narbutaite, L., Adomkus, T., Pocta, P., Brida, P., Machaj, J., Patlins, A.: Quality-driven schemes enhancing resilience of wireless networks under weather disruptions. In: Guide to Disaster-Resilient Communication Networks, pp. 299–326 (2020)

  • Burbank, J.L., Andrusenko, J., Everett, J.S., Kasch, W.T.: Wireless Networking: Understanding Internetworking Challenges. Wiley-IEEE Press, USA (2013)

    Book  Google Scholar 

  • Chriki, A., Touati, H., Snoussi, H., Kamoun, F.: Fanet: Communication, mobility models and security issues. Comput. Netw. 163, 106877 (2019)

    Article  Google Scholar 

  • Cuinas, I.: An introduction to cybersecurity at physical layer: obstacles at radio channel to mitigate hackers’ chance. Elektronika ir Elektrotechnika 26(6), 58–65 (2020)

    Article  Google Scholar 

  • Deng, J., Liang, B., Varshney, P.K.: Tuning the carrier sensing range of IEEE 802.11 mac. In: IEEE Global Telecommunications Conference, 2004. GLOBECOM’04., pp. 2987–2991 (2004)

  • Garcia-Santiago, A., Castaneda-Camacho, J., Guerrero-Castellanos, J.F., Mino-Aguilar, G.: Evaluation of aodv and dsdv routing protocols for a fanet: Further results towards robotic vehicle networks. In: 2018 IEEE 9th Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4 (2018)

  • Gast, M.: 802.11 Wireless Networks: The Definitive Guide. Southeast University Press, Southeast University (2006)

    Google Scholar 

  • Ghosh, R.K.: Wireless Networking and Mobile Data Management. Springer, Singapore (2017)

    Book  Google Scholar 

  • Guillen-Perez, A., Montoya, A.M., Sanchez-Aarnoutse, J.C., Cano, M.D.: A comparative performance evaluation of routing protocols for flying ad-hoc networks in real conditions. Appl. Sci. 11(10), 4363 (2021)

    Article  CAS  Google Scholar 

  • Hassan, M.A.: Energy efficient hierarchical-based fish eye state routing protocol for flying ad-hoc networks. Indones. J. Electr. Eng. Comput. Sci. 21(1), 465–471 (2021)

    Google Scholar 

  • Hung, F.Y., Marsic, I.: Effectiveness of physical and virtual carrier sensing in ieee 802.11 wireless ad hoc networks. In: 2007 IEEE Wireless Communications and Networking Conference, pp. 143–147 (2007)

  • Javaid, F., Wang, A., Sana, M.U., Husain, A., Ashraf, I.: An optimized approach to channel modeling and impact of deteriorating factors on wireless communication in underground mines. Sensors 21(17), 5905 (2021)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Jornet, J.M., Knightly, E.W., Mittleman, D.M.: Wireless communications sensing and security above 100 ghz. Nat. Commun. 14(1), 841 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju, H.J., Rubin, I., Kuan, Y.C.: An adaptive rts/cts control mechanism for ieee 802.11 mac protocol. In: The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring., pp. 1469–1473 (2003)

  • Kaur, J., Singh, A.: A review study on the use of manet for wireless devices. In: Proceedings of the International Conference on Advances in Electronics, Electrical and Computational Intelligence (ICAEEC) (2019)

  • Khan, M.A., Khan, I.U., Safi, A., Quershi, I.M.: Dynamic routing in flying ad-hoc networks using topology-based routing protocols. Drones 2(3), 27 (2018)

    Article  Google Scholar 

  • Kim, T.S., Lim, H., Hou, J.C.: Improving spatial reuse through tuning transmit power, carrier sense threshold, and data rate in multihop wireless networks. In: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, pp. 366–377 (2006)

  • Ksouri, C., Jemili, I., Mosbah, M., Belghith, A.: Hybrid routing for safety data with intermittent v2i connectivity. Veh. Commun. 38, 100519 (2022)

    Google Scholar 

  • Kumar, S., Vasudeva, A., Sood, M.: Battery and energy management in uav-based networks. In: Mohindru, V., Singh, Y., Bhatt, R., Gupta, A.K. (eds.) Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications, pp. 43–71 (2021). https://doi.org/10.1002/9781119769170.ch3

  • Kumar, S., Bansal, A.: Performance investigation of topology-based routing protocols in flying ad-hoc networks using ns-2. In: IoT and Cloud Computing Advancements in Vehicular Ad-Hoc Networks, pp. 243–267. IGI Global, ??? (2020)

  • Leonov, A.V., Litvinov, G.A., Shcherba, E.V.: Simulation and comparative analysis of packet delivery in flying ad hoc network (fanet) using aodv. In: 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 71–78 (2018)

  • Linfoot, S., Adarbah, H.Y., Arafeh, B., Duffy, A.: Impact of physical and virtual carrier sensing on the route discovery mechanism in noisy manets. IEEE Trans. Consum. Electron. 59(3), 515–520 (2013)

    Article  Google Scholar 

  • Marconato, E.A., Rodrigues, M., Pires, R.D.M., Pigatto, D.F., Pinto, A.R., Branco, K.R.: Avens: A novel flying ad hoc network simulator with automatic code generation for unmanned aircraft system. Journal Name (2017)

  • Marconato, E.A., Rodrigues, M., Pires, R.D.M., Pigatto, D.F., Pinto, A.R., Branco, K.R.: Avens-a novel flying ad hoc network simulator with automatic code generation for unmanned aircraft system. Hawaii International Conference on System Sciences (2017)

  • Mustapha, I., Jiya, J.D., Abbagana, M.: Effect of carrier sensing range on the throughput of multi-hop wireless ad-hoc network. Indian J. Edu. Inf. Manag. 1, 16–22 (2012)

  • Mészáros, L., Varga, A., Kirsche, M.: INET framework. In: Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem, pp. 55–106 (2019)

  • Natarajan, V.A., Kumar, M.S.: Improving qos in wireless sensor network routing using machine learning techniques. In: 2023 International Conference on Networking and Communications (ICNWC), pp. 1–5 (2023)

  • Nayyar, A.: Flying adhoc network (fanets): Simulation based performance comparison of routing protocols: Aodv, dsdv, dsr, olsr, aomdv and hwmp. In: 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), pp. 1–9 (2018). https://doi.org/10.1109/ICABCD.2018.8465130

  • Nellore, K., Polasi, P.K.: An improved underwater wireless sensor network communication using internet of things and signal to noise ratio analysis. Trans. Emerg. Telecommun. Technol. 33(9), 4560 (2022)

    Article  Google Scholar 

  • Nicopolitidis, P., Obaidat, M.S., Papadimitriou, G.I., Pomportsis, A.S.: Wireless Networks. Wiley, Southeast University (2003)

    Google Scholar 

  • Oliveira, L.M., Rodrigues, J.J.: Wireless sensor networks: a survey on environmental monitoring. J. Commun. 6(2), 143–151 (2011)

    Article  Google Scholar 

  • Oubbati, O.S., Lakas, A., Zhou, F., Günes, M., Lagraa, N., Yagoubi, M.B.: Intelligent UAV-assisted routing protocol for urban Vanets. Comput. Commun. 107, 93–111 (2017)

    Article  Google Scholar 

  • Raychaudhuri, D., Mandayam, N.B.: Frontiers of wireless and mobile communications. Proc. IEEE 100(4), 824–840 (2012)

    Article  Google Scholar 

  • Rooshenas, A., Rabiee, H.R., Movaghar, A., Naderi, M.Y.: Reducing the data transmission in wireless sensor networks using the principal component analysis. In: 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 133–138 (2010)

  • Roy, A., Pachuau, J.L., Saha, A.K.: An overview of queuing delay and various delay-based algorithms in networks. Computing 103(10), 2361–2399 (2021)

    Article  MathSciNet  Google Scholar 

  • Shanthi, K.G., Manikandan, A.: An improved adaptive modulation and coding for cross layer design in wireless networks. Wirel. Pers. Commun. 108, 1009–1020 (2019)

    Article  Google Scholar 

  • Shawkat, S.A., Ismail, R.N., Abdulqader, I.R.: Implementation of a hybrid ad-hoc sensor system. In: AIP Conference Proceedings, vol. 2394 (2022). AIP Publishing

  • Singh, J.: Energy efficient data aggregation and density-based spatial clustering of applications with noise for activity monitoring in wireless sensor networks. Eng. Sci. 19, 144–153 (2022)

    Google Scholar 

  • Singh, K., Verma, A.K.: Applying olsr routing in fanets. In: 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, pp. 1212–1215 (2014)

  • Sonntag, S., Manner, J., Schulte, L.: Netradar-measuring the wireless world. In: 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 29–34 (2013)

  • Srivastava, A., Prakash, J.: Future fanet with application and enabling techniques: anatomization and sustainability issues. Comput. Sci. Rev. 39, 100359 (2021)

    Article  MathSciNet  Google Scholar 

  • Sugita, M., Kainuma, Y., Ota, K., Matsue, H.: A route discovery method based on received power of repeater nodes for sensor networks. In: The International Conference on Information Network 2012, pp. 1–6 (2012)

  • Tamani, N., Brik, B., Lagraa, N., Ghamri-Doudane, Y.: On link stability metric and fuzzy quantification for service selection in mobile vehicular cloud. IEEE Trans. Intell. Transp. Syst. 21(5), 2050–2062 (2020). https://doi.org/10.1109/TITS.2019.2911860

    Article  Google Scholar 

  • Tamani, N., Brik, B., Lagraa, N., Ghamri-Doudane, Y.: Vehicular cloud service provider selection: a flexible approach. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6 (2017). https://doi.org/10.1109/GLOCOM.2017.8253924

  • Tropea, M., Santamaria, A.F., De Rango, F., Potrino, G.: Reactive flooding versus link state routing for Fanet in precision agriculture and networking conference (ccnc), pp. 1–6 (2019)

  • Tuli, E.A., Golam, M., Kim, D.S., Lee, J.M.: Performance enhancement of optimized link state routing protocol by parameter configuration for UANET. Drones 6(1), 22 (2022)

    Article  Google Scholar 

  • Valberg, P.A., Deventer, T.E., Repacholi, M.H.: Workgroup report: base stations and wireless networks-radiofrequency (rf) exposures and health consequences. Environ. Health Perspect. 115(3), 416–424 (2007)

    Article  PubMed  Google Scholar 

  • Varga, A.: The omnet++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM’2001) (2001)

  • Venugopal, T., Radhika, S.: A survey on channel coding in wireless networks. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 784–789 (2020)

  • Wheeb, A.H.: Flying ad hoc networks (fanet): performance evaluation of topology based routing protocols. Int. J. Interact. Mob. Technol 16(4), 137–149 (2022)

    Article  Google Scholar 

  • Yang, H., Liu, Z.: An optimization routing protocol for fanets. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–8 (2019)

    Article  CAS  Google Scholar 

  • Yang, X., Vaidya, N.: On physical carrier sensing in wireless ad hoc networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., pp. 2525–2535 (2005)

  • Yogarayan, S.: Wireless ad hoc network of manet, vanet, fanet and sanet: a review. J. Telecommun. Electronic Comput. Eng. (JTEC) 13(4), 13–18 (2021)

    Google Scholar 

  • Zhang, Y., Huston, D., Xia, T.: Signal calibration and noise reduction for software-defined radio-based GPR. IEEE Trans. Instrum. Meas. 72, 1–10 (2023)

  • Zheng, B., Zhuo, K., Zhang, H., Wu, H.X.: A novel airborne greedy geographic routing protocol for flying ad hoc networks. Wirel. Netw. 1–15 (2022). https://doi.org/10.1007/s11276-022-03030-9

Download references

Author information

Authors and Affiliations

Authors

Contributions

MBB, BB, and AM contribute on the design, develop, and writing the paper. MRK, AK, and ABB contribute to validating and reviewing the work and paper.

Corresponding author

Correspondence to Bouziane Brik.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezziane, M.B., Brik, B., Messiaid, A. et al. Impact of noise on data routing in flying Ad hoc networks. Opt Quant Electron 56, 563 (2024). https://doi.org/10.1007/s11082-023-06217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06217-2

Keywords

Navigation