Skip to main content
Log in

Exploring the optical properties of CuCo2O4-doped polyethylene oxide and carboxymethylcellulose for optoelectronic application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nanocomposite films comprising polyethylene oxide (PEO) and carboxymethylcellulose (CMC) were fabricated via the solution casting process, with the incorporation of copper cobaltite nanoparticles (CuCo2O4 NPs). The study investigated the impact of CuCo2O4 NPs on the structural and optical properties of the PEO/CMC polymer blend, using X-ray diffraction, Fourier transform infrared (FTIR), and ultraviolet–visible spectroscopy (UV–Vis). The Debye–Scherrer equation was utilized to determine the size of the nanoparticles, and the results showed that the nanoparticle size decreased upon dispersion within the host matrix. The FTIR spectra of PEO/CMC blends revealed distinct vibrational spectral bands. These bands exhibited variations in their intensities, signifying interactions attributed to hydrogen bonds in the polymers. Various optical parameters, including energy gap, refractive index, Urbach energy, and extinction coefficient, were examined. The transmittance of the PEO/CMC blend exhibited a decrease from 88.6 to 18.8% following the dispersion of 3 wt% CuCo2O4 NPs. The optical analysis revealed an increase in the refractive index and a reduction in the optical band gap values, which reduced from 4.37 eV in the polymer blend to 3.77 eV in samples containing 3 wt% CuCo2O4. Furthermore, an increase in Urbach energy was observed with the rise in CuCo2O4 NPs content. The study also explored the influence of CuCo2O4 NPs on the fluorescence spectra of the PEO/CMC matrix and observed an increase in both optical dielectric and optical conductivity with increasing CuCo2O4 NPs content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  • Abdelghany, A., et al.: Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)

    Article  CAS  Google Scholar 

  • Abdelrazek, E.M., et al.: Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7(4), 419–431 (2018)

    Article  CAS  Google Scholar 

  • Abdul Nabi, M., et al.: Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int. J. Polym. Sci. 2014, 1–7 (2014)

    Google Scholar 

  • Abutalib, M.M., Yahia, I.: Analysis of the linear/nonlinear optical properties of basic fuchsin dye/FTO films: controlling the laser power of red/green lasers. Optik 179, 145–153 (2019)

    Article  ADS  CAS  Google Scholar 

  • Ahmed, R., et al.: Influence of Fe2O3@ reduced graphene oxide nanocomposite on the structural, morphological, and optical features of the polyvinyl alcohol films for optoelectronic applications. Phys. Scr. 98(5), 055928 (2023)

    Article  ADS  Google Scholar 

  • Albalawi, H., et al.: Synthesis and characterization of sodium alginate/polyvinyl alcohol/zinc oxide/iron oxide nanocomposites for electrochemical applications. Polym. Compos. 44(3), 1762–1771 (2023)

    Article  CAS  Google Scholar 

  • Alhagri, I.A., et al.: Enhanced structural, optical properties and antibacterial activity of PEO/CMC doped TiO2 NPs for food packaging applications. Polymers 15(2), 384 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsalmah, H.A., et al.: Hybrid GO/TiO2 nanoparticles reinforced NaAlg/PVA blend: nanocomposites for high-performance energy storage devices. Polym. Adv. Technol. 34(9), 2831–2840 (2023)

    Article  CAS  Google Scholar 

  • Aziz, S.B., et al.: Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder. Int. J. Metals 2013, 1–6 (2013)

    Article  Google Scholar 

  • Cha, J., et al.: Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. B Eng. 162, 283–288 (2019)

    Article  CAS  Google Scholar 

  • Chatterjee, D.P., Pakhira, M., Nandi, A.K.: Fluorescence in “nonfluorescent” polymers. ACS Omega 5(48), 30747–30766 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadashi, S., Poursalehi, R., Delavari, H.: Structural and optical properties of pure iron and iron oxide nanoparticles prepared via pulsed Nd: YAG laser ablation in liquid. Proc. Mater. Sci. 11, 722–726 (2015)

    Article  CAS  Google Scholar 

  • Davachi, S.M., et al.: The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos. B Eng. 175, 107088 (2019)

    Article  Google Scholar 

  • De Koninck, M., Poirier, S.-C., Marsan, B.: Cu x Co3− x O4 Used as bifunctional electrocatalyst: physicochemical properties and electrochemical characterization for the oxygen evolution reaction. J. Electrochem. Soc. 153(11), 2103 (2006)

    Google Scholar 

  • Ebnalwaled, A., Thabet, A.: Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 220, 374–383 (2016)

    Article  CAS  Google Scholar 

  • El Sayed, A., Morsi, W.J.J.O.M.S.: α-Fe 2O3/(PVA+ PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49, 5378–5387 (2014)

    Article  ADS  Google Scholar 

  • El-Bana, M., et al.: Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polym. Compos. 39(10), 3712–3725 (2018)

    Article  CAS  Google Scholar 

  • El-Naggar, A., et al.: Embedding of 50% PVA/50% PVP blend with Sn 0.75 M 0.25 S 2,(M = Y, Fe, Cr, V); structural and optical study. Appl. Phys. A 127, 1–11 (2021)

    Article  Google Scholar 

  • El-Naggar, A., et al.: Effect of ZnO/(Co or Mn) ratios on the structure and optical spectroscopy parameters of PVA/PVP/PEG blended polymer. Opt. Mater. 128, 112411 (2022a)

    Article  CAS  Google Scholar 

  • El-Naggar, A.M., et al.: Improvement of the optical characteristics of PVA/PVP blend with different concentrations of SnS2/Fe. J. Vinyl Addit. Technol. 28(1), 82–93 (2022b)

    Article  CAS  Google Scholar 

  • El-Naggar, A., et al.: Effect of MnS/ZnS nanocomposite on the structural, linear and nonlinear optical properties of PVA/CMC blended polymer. Opt. Mater. 128, 112379 (2022c)

    Article  CAS  Google Scholar 

  • El-Naggar, A., et al.: Impact of loading PVA/CMC/PVP blend with CdS0.9M0.1 non-stoichiometrically doped by transition metals (M). Opt. Mater. 133, 113085 (2022d)

    Article  CAS  Google Scholar 

  • El-Naggar, A., et al.: Structural, dielectric, linear and nonlinear optical parameters of Zn0.9Cu0.1S filled PVA/CMC/PEG blends. Opt. Quant. Electron. 55(9), 790 (2023)

    Article  CAS  Google Scholar 

  • El-Sayed, S., et al.: DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B 406(21), 4068–4076 (2011)

    Article  ADS  CAS  Google Scholar 

  • Flores-Lasluisa, J.X., et al.: Copper-doped cobalt spinel electrocatalysts supported on activated carbon for hydrogen evolution reaction. Materials 12(8), 1302 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, B., Agarwal, R., SarwarAlam, M.: Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J. Appl. Polym. Sci. 127(2), 1301–1308 (2013)

    Article  CAS  Google Scholar 

  • Heiba, Z.K., Mohamed, M.B.: Effect of annealed and Mg-doped nano ZnO on physical properties of PVA. J. Mol. Struct. 1181, 507–517 (2019)

    Article  ADS  CAS  Google Scholar 

  • Heiba, Z.K., Mohamed, M.B.: Effect of gamma radiation on structural and optical parameters of Sm2O3: Mn/PVA nanocomposite film. Opt. Quant. Electron. 52, 1–14 (2020)

    Article  Google Scholar 

  • Heiba, Z.K., et al.: Optical and electrical properties of quantum composite of polyvinyl alcohol matrix with CdSe quantum dots. Colloid Polym. Sci. 294, 357–365 (2016)

    Article  CAS  Google Scholar 

  • Heiba, Z., Mohamed, M.B., Imam, N.: Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite. J. Mol. Struct. 1136, 321–329 (2017)

    Article  ADS  CAS  Google Scholar 

  • Heiba, Z.K., et al.: Structural and optical properties of Cd1–x Mn x Fe2O4/PMMA nanocomposites. J. Inorgan. Organomet. Polym. Mater. 30, 1898–1906 (2020)

    Article  CAS  Google Scholar 

  • Heiba, Z.K., et al.: The role of Cd0.9Mg0.1S nanofillers on the structural, optical, and dielectric properties of PVA/CMC polymeric blend. Chem. Phys. Lett. 770, 138460 (2021)

    Article  CAS  Google Scholar 

  • Heiba, Z.K., et al.: Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4. J. Mater. Res. Technol. 10, 832–839 (2021)

    Article  CAS  Google Scholar 

  • Heiba, Z.K., Mohamed, M.B., Ahmed, S.I.: Exploring the physical properties of PVA/PEG polymeric material upon doping with nano gadolinium oxide. Alex. Eng. J. 61(5), 3375–3383 (2022)

    Article  Google Scholar 

  • Hermans, P., Weidinger, A.: X-ray studies on the crystallinity of cellulose. J. Polym. Sci. 4(2), 135–144 (1949)

    Article  ADS  CAS  Google Scholar 

  • Kara, H., Oylumluoglu, G., Coban, M.B.: Photoluminescence properties of a new Sm(III) complex/PMMA electrospun composite fibers. J. Clust. Sci. 31, 701–708 (2020)

    Article  CAS  Google Scholar 

  • Kaverlavani, S.K., Moosavifard, S., Bakouei, A.: Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5(27), 14301–14309 (2017)

    Article  CAS  Google Scholar 

  • Khordad, R.: Absorbance of Iron nanoparticles dispersed in the ethylene glycol and n-propanol. Armen. J. Phys. 9(3), 211–219 (2016)

    CAS  Google Scholar 

  • Kumar, K., et al.: Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J. Non-Cryst. Solids 358(23), 3205–3211 (2012)

    Article  ADS  Google Scholar 

  • Li, L.J.M.: Tunable memristic characteristics based on graphene oxide charge-trap memory. Micromachines 10(2), 151 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., et al.: The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors. J. Alloys Compd. 894, 162566 (2022)

    Article  CAS  Google Scholar 

  • Mohamed, M.B., Abdel-Kader, M.J.A.P.A.: Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend. Appl. Phys. 125, 1–11 (2019)

    Article  Google Scholar 

  • Mohamed, M.B., Heiba, Z.K., Imam, N.: Optical and thermogravimetric analysis of Zn1-xCuxS/PVA nanocomposite films. J. Mol. Struct. 1163, 442–448 (2018)

    Article  ADS  CAS  Google Scholar 

  • Morsi, M., et al.: Effect of lithium titanate nanoparticles on the structural, optical, thermal and electrical properties of polyethylene oxide/carboxymethyl cellulose blend. J. Mater. Sci. Mater. Electron. 29, 15912–15925 (2018)

    Article  CAS  Google Scholar 

  • Nofal, M.M., et al.: Polymer composites with 0.98 transparencies and small optical energy band gap using a promising green methodology: structural and optical properties. Polymers 13(10), 1648 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragab, H., Ahmad, F., Radwan, S.N.: Change spectroscopic studies and optimization electrical properties of PVP/PEO doped copper phthalocyanines. Physica B 502, 97–102 (2016)

    Article  ADS  CAS  Google Scholar 

  • Rajeh, A., Morsi, M., Elashmawi, I.: Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159, 430–440 (2019)

    Article  ADS  CAS  Google Scholar 

  • Reddy, K.R., et al.: Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120, 169–174 (2016)

    Article  CAS  Google Scholar 

  • Sharma, A., Aggarwal, S.: Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation. J. Non-Cryst. Solids 485, 57–65 (2018)

    Article  ADS  Google Scholar 

  • Sheha, E., et al.: Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik 123(13), 1161–1166 (2012)

    Article  ADS  CAS  Google Scholar 

  • Soliman, T., Vshivkov, S.A.: Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non-Cryst. Solids 519, 119452 (2019)

    Article  CAS  Google Scholar 

  • Soliman, T., et al.: Impact of Mn–Ni spinal ferrite nanoparticles on the structural, morphological, surface roughness, and optical parameters of polyvinyl alcohol for optoelectronic applications. Soft Matter 19(40), 7753–7763 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Taha, T., Saleh, A.: Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A 124(9), 600 (2018)

    Article  ADS  Google Scholar 

  • Taha, T., et al.: Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76, 4769–4784 (2019)

    Article  CAS  Google Scholar 

  • Wang, Q., Chen, D., Zhang, D.: Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors. RSC Adv. 5(117), 96448–96454 (2015)

    Article  ADS  CAS  Google Scholar 

  • Xiong, H.-M., Zhao, X., Chen, J.-S.: New polymer−inorganic nanocomposites: PEO−ZnO and PEO−ZnO−LiClO4 films. J. Phys. Chem. B 105(42), 10169–10174 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Scientific Research Deanship at the University of Ha’il—Saudi Arabia through project number <<RG-23 -176>>.

Author information

Authors and Affiliations

Authors

Contributions

HMR: Methodology, Formal analysis, Investigation, Writing—Review and Editing. NSD: Investigation, Writing—Review and Editing. EAAE: Methodology, Formal analysis, Investigation. NHE: Conceptualization, Methodology, Writing—Review and Editing. ANA: Investigation, Writing—Review and Editing. MOF: Investigation, Writing—Review and Editing.

Corresponding author

Correspondence to H. M. Ragab.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research did not contain any studies involving animal or human participants, nor did it take place in any private or protected areas hence no specific permissions were required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragab, H.M., Diab, N.S., Elneim, E.A.A. et al. Exploring the optical properties of CuCo2O4-doped polyethylene oxide and carboxymethylcellulose for optoelectronic application. Opt Quant Electron 56, 323 (2024). https://doi.org/10.1007/s11082-023-06048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06048-1

Keywords

Navigation