Skip to main content
Log in

Electron-acoustic anti-kink, kink and periodic waves in a collisional superthermal plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A qualitative analysis of the electron-acoustic wave is taken in a collisional plasma having two-temperature electrons with a fixed ion background, where hot electrons follow kappa distribution. The collision between stationary ions and cold electrons is considered. Using reduced perturbation technique, the Burgers equation for the plasma system is derived. Using traveling wave transformation, we obtain the dynamical system corresponding to the plasma system. Phase plane analysis is used in the dynamical system to study different kinds of wave features for the considered plasma system. Moreover periodic wave features and shock wave features are investigated in accordance to periodic orbits and heteroclinic orbits obtained in the phase portrait. Role of the superthermal parameter (\(\kappa \)), speed of the travelling wave (U) and \(\alpha =n_{c_{0}}/n_{h_{0}}\) (where \(n_{c_{0}}\) denotes the number density of cold electrons in equilibrium and \(n_{h_{0}}\) denotes the number density of hot electrons in equilibrium) are shown on the electron-acoustic periodic waves and shock waves structures. The results hold relevance and significance in the context of space plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelwahed, H.G., El-Shewy, E.K., Abdelrahman, M.A.E., El-Rahman, A.A.: Positron nonextensivity contributions on the rational solitonic, periodic, dissipative structures for MKP equation described critical plasmas. Adv. Space Res. 67, 3260–3266 (2021)

    Article  ADS  Google Scholar 

  • Abdelwahed, H.G., Alsarhana, A.F., El-Shewy, E.K., Abdelrahman, M.A.E.: Characteristics of new stochastic solitonic solutions for the chiral type of nonlinear Schrodinger equation. Fractal Fract. 7, 461 (2023). https://doi.org/10.3390/fractalfract7060461

    Article  Google Scholar 

  • Abdelwahed, H.G., Alsarhana, A.F., El-Shewy, E.K., Abdelrahman, M.A.E.: Higher-order dispersive and nonlinearity modulations on the propagating optical solitary breather and super huge waves. Fractal Fract. 7, 127 (2023). https://doi.org/10.3390/fractalfract7020127

    Article  Google Scholar 

  • Abdikian, A., Tamang, J., Saha, A.: Electron-acoustic supernonlinear waves and their multistability in the framework of the nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 075502 (2020). https://doi.org/10.1088/1572-9494/ab8a20

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Akter, S., Hafez, M.G.: Head-on collision between two-counter-propagating electron acoustic soliton and double layer in an unmagnetized plasma. AIP Adv. 13, 015005 (2023). https://doi.org/10.1063/5.0124133

    Article  Google Scholar 

  • Alharbi, Y.F., El-Shewy, E.K., Abdelrahman, M.A.E.: New and effective solitary applications in Schrodinger equation via Brownian motion process with physical coefficients of fiber optics. AIMS Math. 8(2), 4126–4140 (2022)

    Article  MathSciNet  Google Scholar 

  • Ali, R., Saha, A., Chaterjee, P.: Analytical electron acoustic solitary wave solution for the forced KdV equation in superthermal plasmas. Phys. Plasmas 24, 122106 (2017). https://doi.org/10.1063/1.4994562

    Article  ADS  CAS  Google Scholar 

  • Alkinidri, M., Hussain, S., Nawaz, R.: Analysis of noise attenuation through soft vibrating barriers: an analytical investigation. AIMS Math. 8(8), 18066–18087 (2023)

    Article  MathSciNet  Google Scholar 

  • Anderegg, F., Driscoll, C.F., Dubin, D.H.E., O’Neil, T.M., Valentini, F.: Electron acoustic waves in pure ion plasmas. Phys. Plasmas 16, 055705 (2009). https://doi.org/10.1063/1.3099646

    Article  ADS  CAS  Google Scholar 

  • Azzam, M.A., Abdelwahed, H.G., El-Shewy, E.K., Abdelrahman, M.A.E.: Langmuir forcing and collapsing subsonic density cavitons via random modulations. Symmetry 15, 1558 (2023). https://doi.org/10.3390/sym15081558

    Article  ADS  Google Scholar 

  • Bansal, S., Aggarwal, M., Gill, T.S.: Obliquely propagating electron acoustic shock waves in magnetized plasma. Braz. J. Phys. 48, 597–603 (2018)

    Article  ADS  Google Scholar 

  • Berthomier, M., Pottelette, R., Malingre, M., Khotyaintsev, Y.: Electron-acoustic solitons in an electron-beam plasma system. Phys. Plasmas 7(7), 2987–2994 (2000)

    Article  ADS  CAS  Google Scholar 

  • Bibi, A., Shakeel, M., Khan, D., Hussain, S., Chou, D.: Study of solitary and kink waves, stability analysis, and fractional effect in magnetized plasma. Results Phys. 44, 106166 (2023). https://doi.org/10.1016/j.rinp.2022.106166

    Article  Google Scholar 

  • Bostron, R.: Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756–763 (1992)

    Article  ADS  Google Scholar 

  • Cattell, C.A., Dombeck, J., Wygant, J.R., Hudson, M.K., Mozer, F.S., Temerin, M.A., Peterson, W.K., Kletzing, C.A., Russell, C.T., Pfaff, R.F.: Comparisons of polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. Geophys. Res. Lett. 26, 425–428 (1999)

    Article  ADS  Google Scholar 

  • Chakrabarti, N., Sengupta, S.: Nonlinear interaction of electron plasma waves with electron-acoustic waves in plasmas. Phys. Plasmas 16, 072311 (2011). https://doi.org/10.1063/1.3191722

    Article  ADS  CAS  Google Scholar 

  • Chatterjee, P., Mandi, L.: The separation of one-soliton-shock to multi-soliton-shock of dust-ion acoustic wave using Lax pair and Darboux transformation of Burgers’ equation. Phys. Fluids 35(8), 087131 (2023). https://doi.org/10.1063/5.0160542

    Article  ADS  CAS  Google Scholar 

  • Chowdhury, S., Biswas, S., Chakrabarti, N., Pal, R.: Experimental observation of electron-acoustic wave propagation in laboratory plasma. Phys. Plasmas 24, 062111 (2017). https://doi.org/10.1063/1.4985680

    Article  ADS  Google Scholar 

  • Danehkar, A., Saini, N.S., Hellberg, M.A., Kourakis, I.: Electron-acoustic solitary waves in the presence of a suprathermal electron component. Phys. Plasmas 18, 072902 (2011). https://doi.org/10.1063/1.3606365

    Article  ADS  Google Scholar 

  • Dubouloz, N., Treumann, R.A., Pottelette, R., Malingre, M.: Turbulence generated by a gas of electron acoustic solitons. J. Geophys. Res. 98, 17415–17422 (1993)

    Article  ADS  Google Scholar 

  • Dutta, M., Chakrabarti, N., Roychoudhury, R., Khan, M.: Nonlinear behavior of electron acoustic waves in an un-magnetized plasma. Phys. Plasmas 18, 102301 (2011). https://doi.org/10.1063/1.3644498

    Article  ADS  CAS  Google Scholar 

  • Dutta, M., Ghosh, S., Chakrabarti, N.: Electron acoustic shock waves in collisional plasma. Phys. Rev. E 86, 066408 (2012). https://doi.org/10.1103/PhysRevE.86.066408

    Article  ADS  CAS  Google Scholar 

  • Dwivedi, C.B., Pandey, B.P.: Electrostatic shock wave in dusty plasmas. Phys. Plasmas 2, 4134–4139 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ergun, R.E., Andersson, L., Main, D., Su, Y.J., Newman, D.L., Goldman, M.V., Carlson, C.W., Hull, A.J., McFadden, J.P., Mozer, F.S.: Auroral particle acceleration by strong double layers: the upward current region. J. Geophys. Res. 109, A12220 (2004). https://doi.org/10.1029/2004JA010545

    Article  ADS  Google Scholar 

  • Evans, D.S.: Precipitating electron fluxes formed by a magnetic field aligned potential difference. J. Geophys. Res. 79, 2853–2858 (1974)

    Article  ADS  Google Scholar 

  • Gary, S.P.: The electron/electron-acoustic instability. Phys. Fluids 30, 2745–2749 (1987)

    Article  ADS  Google Scholar 

  • Gary, S.P., Tokar, R.L.: The electron-acoustic mode. Phys. Fluids 28, 2439–2441 (1985)

    Article  ADS  Google Scholar 

  • Ghosh, B.: Basic Plasma Physics. Narosa Publishing House. ISBN-10: 8184873298 (2017)

  • Han, J., Li, J., He, Y., Han, Z., Dong, G., Nan, Y.: The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with \(q\)-nonextensive distributed electrons. Phys. Plasmas 20, 072109 (2013). https://doi.org/10.1063/1.4816027

    Article  ADS  CAS  Google Scholar 

  • Han, J., Duan, W., Li, J., He, Y., Luo, J., Nan, Y., Han, Z., Dong, G.: Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons. Phys. Plasmas 21, 012102 (2014). https://doi.org/10.1063/1.4861257

    Article  ADS  CAS  Google Scholar 

  • Hellberg, M.A., Mace, R.L., Armstrong, R.J., Karlstad, G.: Electron-acoustic waves in the laboratory: an experiment revisited. J. Plasma Phys. 64, 433–443 (2000)

    Article  ADS  CAS  Google Scholar 

  • Kourakis, I., Shukla, P.K.: Electron-acoustic plasma waves: oblique modulation and envelope solitons. Phys. Rev. E 69, 036411 (2004). https://doi.org/10.1103/PhysRevE.69.036411

    Article  ADS  CAS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P., Verheest, F., Bharuthram, R.: Study of nonlinear ion and electron-acoustic waves in multi-component space plasmas. Nonlinear Processes Geophys. 15, 903–913 (2008)

    Article  ADS  Google Scholar 

  • Mace, R.L., Hellberg, M.A.: Higher-order electron modes in a two-electron-temperature plasma. J. Plasma Phys. 43(2), 239–255 (1990)

    Article  ADS  Google Scholar 

  • Mace, R.L., Hellberg, M.A.: A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2, 2098–2109 (1995)

    Article  ADS  CAS  Google Scholar 

  • Mace, R.L., Amery, G., Hellberg, M.A.: The electron-acoustic mode in a plasma with hot suprathermal and cool Maxwellian electrons. Phys. Plasmas 6, 44–49 (1999)

    Article  ADS  CAS  Google Scholar 

  • Mamun, A.A.: Dust-electron-acoustic shock waves due to dust charge fluctuation. Phys. Lett. A 372, 4610–4613 (2008)

    Article  ADS  CAS  Google Scholar 

  • Montgomery, D.S., Focia, R.J., Rose, H.A., Russell, D.A., Cobble, J.A., Fernandez, J.C., Johnson, R.P.: Observation of stimulated electron-acoustic wave scattering. Phys. Rev. Lett. 87, 155001 (2001). https://doi.org/10.1103/PhysRevLett.87.155001

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mozer, F.S., Kletzig, C.A.: Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region. Geophys. Res. Lett. 25, 1629–1632 (1998)

    Article  ADS  Google Scholar 

  • Mozer, F.S., Carlson, C.W., Hudson, M.K., Torbert, R.B., Parady, B., Yatteau, J., Kelley, M.C.: Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292–296 (1977). https://doi.org/10.1103/PhysRevLett.38.292

    Article  ADS  Google Scholar 

  • Nikolic, L., Skoric, M.M., Ishiguro, S., Sato, T.: Stimulated electron-acoustic-wave scattering in a laser plasma. Phys. Rev. E 66, 036404 (2002). https://doi.org/10.1103/physreve.66.036404

    Article  ADS  Google Scholar 

  • Pottelette, R., Berthomier, M.: Nonlinear electron acoustic structures generated on the high-potential side of a double layer. Nonlin. Process Geophys. 16, 373–380 (2009)

    Article  ADS  Google Scholar 

  • Pottelette, R., Treumann, R.: Electron holes in the auroral upward current region. Geophys. Res. Lett. 32, L12104 (2005). https://doi.org/10.1029/2005GL022547

    Article  ADS  Google Scholar 

  • Saha, A., Banerjee, S.: Dynamical Systems and Nonlinear Waves in Plasmas. CRC Press (2021)

    Book  Google Scholar 

  • Saha, A., Chatterjee, P.: Bifurcations of electron acoustic traveling waves in an unmagnetized quantum plasma with cold and hot electrons. Astrophys. Space Sci. 349, 239–244 (2014)

    Article  ADS  Google Scholar 

  • Saha, A., Chatterjee, P.: Electron acoustic blow up solitary waves and periodic waves in an unmagnetized plasma with kappa distributed hot electrons. Astrophys. Space Sci. 353, 163–168 (2014)

    Article  ADS  Google Scholar 

  • Sarkar, J., Chandra, S., Goswami, J., Ghosh, B.: Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions. Contrib. Plasma Phys. 60(7), e201900202 (2020)

    Article  ADS  CAS  Google Scholar 

  • Sarma, J., Dev, A.N.: Dust acoustic waves in warm dusty plasmas. Indian J. Pure Appl. Phys. 52, 747–754 (2014)

    Google Scholar 

  • Shukla, P.K., Mamun, A.A.: Dust-acoustic shocks in a strongly coupled dusty plasma. IEEE Trans. Plasma Sci. 29, 221–225 (2001)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L., Hellberg, M.A.: Dynamics of coupled light waves and electron-acoustic waves. Phys. Rev. E 66, 027403 (2002)

    Article  ADS  CAS  Google Scholar 

  • Singh, S.V., Lakhina, G.S.: Generation of electron-acoustic waves in the magnetosphere. Planet. Space Sci. 49, 107–114 (2001)

    Article  ADS  Google Scholar 

  • Singh, S.V., Rubias, R., Devanandhan, S., Lakhina, G.S.: Nonlinear electrostatic waves in the auroral plasma. Phys. Scr. 95, 075602 (2020). https://doi.org/10.1088/1402-4896/ab92db

    Article  CAS  Google Scholar 

  • Strogatz, S.H.: Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry and Engineering. CRC Press (2015)

    Google Scholar 

  • Summers, D., Thorne, R.M.: The modified plasma dispersion function. Phys. Fluids B 3, 1835–1847 (1991)

    Article  ADS  Google Scholar 

  • Surendra, M., Graves, D.B.: Electron-acoustic waves in capacitively coupled, low-pressure rf glow discharges. Phys. Rev. Lett. 66, 1469–1472 (1991). https://doi.org/10.1103/PhysRevLett.66.1469

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tamang, J., Saha, A.: Phase plane analysis of the dust-acoustic waves for the Burgers equation in a strongly coupled dusty plasma. Indian J. Phys. 95(4), 749–757 (2019)

    Article  ADS  Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., Mozer, F.S.: Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175–1179 (1982). https://doi.org/10.1103/PhysRevLett.48.1175

    Article  ADS  Google Scholar 

  • Volosevich, A.V., Galperin, Y.I.: Nonlinear wave structures in collisional plasma of auroral E-region ionosphere. Ann. Geophys. 15, 890–898 (1997). https://doi.org/10.1007/s00585-997-0890-8

  • Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966). https://doi.org/10.1103/PhysRevLett.17.996

    Article  ADS  CAS  Google Scholar 

  • Yu, M.Y., Shukla, P.K.: Linear and nonlinear modified electron-acoustic waves. J. Plasma Phys. 29, 409–413 (1983)

    Article  ADS  Google Scholar 

Download references

Funding

Sikkim Manipal Institute Of Technology, Sikkim Manipal University.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Asit Saha.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we have shown some steps for the derivation of the dynamical system (22) from the Burgers Eq. (20).

From equation (21) we get

$$\begin{aligned}{} & {} \frac{\partial \psi }{\partial \tau }= \frac{\partial \psi }{\partial \eta }. \frac{\partial \eta }{\partial \tau }=-U\frac{d\psi }{d \eta },\end{aligned}$$
(26)
$$\begin{aligned}{} & {} \frac{\partial \psi }{\partial \xi } = \frac{\partial \psi }{\partial \eta }. \frac{\partial \eta }{\partial \xi }=\frac{d\psi }{d \eta },\end{aligned}$$
(27)
$$\begin{aligned}{} & {} \quad \text {and}\quad \frac{\partial ^2\psi }{\partial \xi ^2} = \frac{d^2\psi }{d \eta ^2}. \end{aligned}$$
(28)

Now using Eqs. (26)-(28) in the Burgers Eq. (20), we get

$$\begin{aligned} -U\frac{d\psi }{d \eta }+A\psi \frac{d\psi }{d \eta }-B\frac{d^2\psi }{d \eta ^2}=0. \end{aligned}$$
(29)

Integrating the above Eq. (29) with respect to \(\eta \), we get

$$\begin{aligned} -U\psi _{1}+A\frac{\psi ^{2}}{2}-B\frac{d\psi }{d \eta }=c_{1}, \end{aligned}$$

where \(c_{1}\) is an integrating constant.

Using boundary conditions   \(\psi \rightarrow 0\), \(\frac{d\psi }{d \eta }\rightarrow 0\) as \(\eta \rightarrow \infty \) or \(\eta \rightarrow -\infty \), we get   \(c_{1}=0\).

Then we have

$$\begin{aligned} \frac{d\psi }{d \eta }=A\frac{\psi ^{2}}{2B}-\frac{U\psi }{B}. \end{aligned}$$
(30)

Now using Eq. (30) in Eq. (29), we get

$$\begin{aligned} \frac{d^2\psi }{d \eta ^2}=\frac{A^{2}}{2B^{2}}\psi ^{3} -\frac{3UA}{2B^{2}}\psi ^{2}+\frac{U^{2}}{B^{2}}\psi . \end{aligned}$$
(31)

Now taking \(\frac{d\psi }{d \eta }=z\), we get the dynamical system (22).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chettri, Y., Saha, A. Electron-acoustic anti-kink, kink and periodic waves in a collisional superthermal plasma. Opt Quant Electron 56, 431 (2024). https://doi.org/10.1007/s11082-023-05898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05898-z

Keywords

Navigation