Skip to main content
Log in

Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the recent decade, several numerical procedures are developed based on the radial basis functions (RBFs) in the strong and the weak form of the mathematical model. These numerical algorithms have been used to solve a wide range of differential equations. However, the accuracy of RBFs collocation method for some partial differential equations (PDEs) is low thus a modification of RBFs collocation plan is required. The main aim of the current paper is to employ an improvement of RBFs collocation algorithm i.e. rational RBFs (RRBFs) collocation method based on the partition of unity (PU) idea to get the numerical solution of the multi-dimensional Ginzburg–Landau equation. It is clear that the RBFs collocation approach is an important numerical procedure for solving PDEs in non-rectangular physical regions. For differential equations with sufficiently smooth solutions, the RBF collocation technique generates acceptable and efficient accuracy. The RBF collocation method may produce solutions with non-physical oscillations for the underlying functions which have steep gradients or discontinuities. Using a fourth-order time-split approach and rational RBFs (RRBFs) collocation method, a new numerical procedure is proposed. First, a fourth-order time-split approach is used to discrete the time variable. Then, a combination of RBFs-PU collocation technique has been developed to get a full-discrete scheme. At the end, several examples have been studied to show the stability, convergence, and accuracy of the proposed numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  • Abbaszadeh, M., Dehghan, M.: The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic–quintic complex Ginzburg–Landau equations on complicated geometries. Eng. Comput. 38(2), 1543–1557 (2022)

    Google Scholar 

  • Abbaszadeh, M., Bagheri Salec, A., Jebur, A.S.: Integrated radial basis function technique to simulate the nonlinear system of time fractional distributed-order diffusion equation with graded time-mesh discretization. Eng. Anal. Bound. Elem. 156, 57–69 (2023)

    MathSciNet  Google Scholar 

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)

    ADS  Google Scholar 

  • Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A.: Modulation instability analysis and optical solutions of an extended (2 + 1)-dimensional perturbed nonlinear Schrödinger equation. Results Phys. 45, 106255 (2023)

    Google Scholar 

  • Batool, F., Akram, G.: On the solitary wave dynamics of complex Ginzburg–Landau equation with cubic nonlinearity. Opt. Quant. Electron. 49, 129 (2017). https://doi.org/10.1007/s11082-017-0973-z

    Article  Google Scholar 

  • Bhatt, H.P., Khaliq, A.Q.M.: Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations. Appl. Math. Comput. 228, 271–291 (2014)

    MathSciNet  Google Scholar 

  • Bienvenue, D., Houwe, A., Rezazadeh, H., Bekir, A., Nsangou, M., Betchewe, G.: New explicit and exact traveling waves solutions to the modified complex Ginzburg Landau equation. Opt. Quant. Electron. 54, 237 (2022). https://doi.org/10.1007/s11082-022-03617-8

    Article  Google Scholar 

  • Buhmann, M.D., De Marchi, S., Perracchione, E.: Analysis of a new class of rational RBF expansions. IMA J. Numer. Anal. 40, 1972–1993 (2020)

    MathSciNet  Google Scholar 

  • De Marchi, S., Martinez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)

    MathSciNet  Google Scholar 

  • Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)

    MathSciNet  Google Scholar 

  • Dehghan, M., Taleei, A.: A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)

    ADS  CAS  Google Scholar 

  • Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)

    MathSciNet  Google Scholar 

  • Djoko, M., Djazet, A., Tabi, C.B., Kofane, T.C.: Impact of higher-order effects on the dynamics of soliton solutions in the (3 + 1)D cubic–quintic–septic complex Ginzburg–Landau equation with higher-order dispersion terms. Optik 281, 170834 (2023)

    ADS  Google Scholar 

  • Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022)

    Google Scholar 

  • Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)

    MathSciNet  Google Scholar 

  • Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    ADS  MathSciNet  CAS  Google Scholar 

  • Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive definite kernels. Adv. Comput. Math. 47(2021), 74 (2021)

    MathSciNet  Google Scholar 

  • Farshadmoghadam, F., Azodi, H.D., Yaghouti, M.R.: An efficient alternative kernel of Gaussian radial basis function for solving nonlinear integro-differential equations. Iran. J. Sci. Technol. Trans. Sci. 46, 869–881 (2022)

    MathSciNet  Google Scholar 

  • Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, USA (2007)

    Google Scholar 

  • Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods using Matlab. World Scientific Publishing Company, Singapore (2015)

    Google Scholar 

  • Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  Google Scholar 

  • Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Arasan, B.T.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020)

    Google Scholar 

  • Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 44, 106171 (2023)

    Google Scholar 

  • Guo, B.L., Wang, Y.F.: Mixed-type soliton solutions for the N-coupled higher-order nonlinear Schrödinger equation in optical fibers. Chaos Solitons Fractals 93, 246–251 (2016)

    ADS  MathSciNet  Google Scholar 

  • Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its application in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)

    ADS  MathSciNet  Google Scholar 

  • Ilati, M.: A meshless local moving Kriging method for solving Ginzburg–Landau equation on irregular domains. Eur. Phys. J. Plus 135(11), 1–8 (2020)

    Google Scholar 

  • Ismail, M.S., Alamri, S.Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333–351 (2004)

    MathSciNet  Google Scholar 

  • Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007)

    Google Scholar 

  • Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)

    ADS  MathSciNet  Google Scholar 

  • Kol, G.R., Woafo, P.: Exact solutions for a system of two coupled discrete nonlinear Schrödinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5956–5962 (2013)

    MathSciNet  Google Scholar 

  • Kurtinaitis, A., Ivanauska, F.: Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9(3), 247–258 (2004)

    MathSciNet  CAS  Google Scholar 

  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    ADS  MathSciNet  CAS  Google Scholar 

  • Miura, R.M.: Bäcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  • Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)

    MathSciNet  Google Scholar 

  • Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 106, 783–813 (2021)

    Google Scholar 

  • Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 143, 14–27 (2022)

    MathSciNet  Google Scholar 

  • Nikan, O., Avazzadeh, Z., Machado, J.A.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(2023), 2327–2344 (2023)

    Google Scholar 

  • Perracchione, E.: Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects. Comput. Appl. Math. 37, 4633–4648 (2018)

    MathSciNet  Google Scholar 

  • Raza, N., Alhussain, Z.A.: Extraction of new bright and Kink soliton solutions related to Ginzburg Landau equation incorporating fractal effects. Opt. Quant. Electron. 54, 26 (2022). https://doi.org/10.1007/s11082-021-03402-z

    Article  Google Scholar 

  • Sarra, S.A., Bai, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Appl. Numer. Math. 130, 131–142 (2018)

    MathSciNet  Google Scholar 

  • Sun, J.Q., Gu, X.Y., Ma, Z.Q.: Numerical study of the solitons waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311–328 (2004)

    MathSciNet  Google Scholar 

  • Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)

    ADS  Google Scholar 

  • Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    ADS  MathSciNet  Google Scholar 

  • Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    ADS  CAS  Google Scholar 

  • Wang, Y.F., Tian, B., Sun, W.R., Liu, R.X.: Vector rogue waves for the N-coupled generalized nonlinear Schrödinger equations with cubic–quintic nonlinearity in an optical fiber. Optik 127(14), 5750–5756 (2016)

    ADS  CAS  Google Scholar 

  • Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities. Math. Comput. Model. 43, 802–808 (2006)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)

    ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, New York (2009)

    Google Scholar 

  • Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)

    ADS  MathSciNet  Google Scholar 

  • Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 28, 167061 (2021)

    ADS  Google Scholar 

  • Zamani-Gharaghoshi, H., Dehghan, M., Abbaszadeh, M.: Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach. Eng. Anal. Bound. Elem. 152, 575–581 (2023)

    MathSciNet  Google Scholar 

  • Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)

    ADS  CAS  Google Scholar 

  • Zhang, G., He, J., Cheng, Y.: Riemann–Hilbert approach and N double-pole solutions for the third-order flow equation of nonlinear derivative Schrödinger-type equation. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08194-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing, review and editing.

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Ethical approval

Ethical approval is not required for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Salec, A.B. & Aal-Ezirej, T.AK.H. Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach. Opt Quant Electron 56, 96 (2024). https://doi.org/10.1007/s11082-023-05648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05648-1

Keywords

Mathematics Subject Classification

Navigation