Skip to main content
Log in

Graphene-enabled terahertz dielectric rod antenna with polarization reconfiguration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, magnetically biased graphene is utilized to achieve a terahertz antenna capable of reconfiguring the polarization of the radiation pattern, transitioning between two states of linear and circular polarizations. The antenna is structured in a way that allows terahertz waves to enter through a slot aperture from a microstrip transmission line. These waves are then coupled to a silicon dielectric resonator, which has a graphene layer on top of it. Subsequently, the terahertz surface waves are launched within the silicon dielectric rod by the dielectric resonator. By applying a biased magnetic field perpendicular to the antenna, the conductivity tensor of graphene exhibits non-diagonal elements. This results in the production of circular polarization within the antenna. Furthermore, altering the direction of the applied bias magnetic field causes a shift in polarization from right-hand circularly polarized to left-hand circularly polarized. The modified relaxation-effect model is employed at terahertz frequencies to calculate the losses of silver metal, deviating from the accurate skin effect model used for microwave frequencies. Remarkable impedance matching is attained for linear and circular polarization within the range of 2.86 to 3.14 THz. The article provides detailed insights into the simulated reflection coefficient, axial ratio, gain, and radiation patterns. This device holds the potential for integration into diverse subwavelength terahertz systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Ahmadi, E., Fakhte, S., Hosseini, S.S.: Dielectric rod nanoantenna fed by a planar plasmonic waveguide. Opt. Quantum Electron. 55(2), 115 (2023)

    Article  Google Scholar 

  • Ali, Q., Shahzad, W., Ahmad, I., Safiq, S., Bin, X., Abbas, S.M., Sun, H.: Recent developments and challenges on beam steering characteristics of reconfigurable transmitarray antennas. Electronics 11(4), 587 (2022)

    Article  Google Scholar 

  • Ali, M., Rivera, A., García-Muñoz, L.E., Gallego, D., Lyubchenko, D., Xenidis, N., Carpintero, G.: Dielectric rod waveguide-based radio-frequency interconnect operating from 55 GHz to 340 GHz. In: 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2. IEEE (2022)

  • Ali, M., Tebart, J., Rivera-Lavado, A., Lioubtchenko, D., Garcia-Muñoz, L.E., Stöhr, A., Carpintero, G.: Terahertz band data communications using dielectric rod waveguide. In: Optical Fiber Communication Conference, pp. W1H-5. Optica Publishing Group (2022).

  • Aqlan, B., Himdi, M., Vettikalladi, H., Le-Coq, L.: A circularly polarized sub-terahertz antenna with low-profile and high-gain for 6G wireless communication systems. IEEE Access 9, 122607–122617 (2021)

    Article  Google Scholar 

  • Chashmi, M.J., Rezaei, P., Kiani, N.: Reconfigurable graphene-based V-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Optik 184, 421–427 (2019)

    Article  ADS  Google Scholar 

  • Chashmi, M.J., Rezaei, P., Kiani, N.: Y-shaped graphene-based antenna with switchable circular polarization. Optik 200(2020), 163321 (2020a)

    Article  ADS  Google Scholar 

  • Chashmi, M.J., Rezaei, P., Kiani, N.: Polarization controlling of multi resonant graphene-based microstrip antenna. Plasmonics 15, 417–426 (2020b)

    Article  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: Manipulation of the Faraday rotation by graphene metasurfaces. J. Magn. Magn. Mater.magn. Magn. Mater. 469, 231–235 (2019)

    Article  ADS  Google Scholar 

  • Dukhopelnykov, S.V., Lucido, M., Sauleau, R., Nosich, A.I.: Circular dielectric rod with conformal strip of graphene as tunable terahertz antenna: interplay of inverse electromagnetic jet, whispering gallery and plasmon effects. IEEE J. Sel. Top. Quantum Electron. 27(1), 1–8 (2020)

    Article  Google Scholar 

  • Elayan, H., Amin, O., Shubair, R.M., Alouini, M.-S.: Terahertz communication: the opportunities of wireless technology beyond 5G. In: 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–5. IEEE (2018)

  • Johnk, C.T.A.: Engineering electromagnetic fields and waves. New York (1975)

  • Fakhte, S., Taskhiri, M.M.: Polarization-reconfigurable terahertz dielectric resonator antenna utilizing the magneto-optical characteristics of graphene. Under Review (2023)

  • Fakhte, S., Taskhiri, M.M.: Dual-band terahertz dielectric resonator antenna with graphene loading. Optic Quantum Electron 54(12), 845 (2022)

    Article  Google Scholar 

  • Gusynin, V., Sharapov, S., Carbotte, J.: Magneto-optical conductivity in graphene. J. Phys. Condens. Mattercondens. Matter 19, 026222 (2006)

    Article  ADS  Google Scholar 

  • He, Y., Chen, Y., Zhang, L., Wong, S.-W., Chen, Z.N.: An overview of terahertz antennas. China Commun. 17(7), 124–165 (2020)

    Article  Google Scholar 

  • Huang, J., Chen, S.J., Xue, Z., Withayachumnankul, W., Fumeaux, C.: "Wideband circularly polarized 3-D printed dielectric rod antenna. IEEE Trans. Antennas Propag. 68(2), 745–753 (2019)

    Article  ADS  Google Scholar 

  • Khan, M.S., Jahnavi Priya, B., Aishika, R., Varshney, G.: Implementing the circularly polarized THz antenna with tunable filtering characteristics. Results Opt 11, 100377 (2023)

    Article  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P., Chashmi, M.J., Danaie, M.: Polarization controling approach in reconfigurable microstrip graphene-based antenna. Optik 203, 163942 (2020)

    Article  ADS  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Polarization controlling method in reconfigurable graphene-based patch four-leaf clover-shaped antenna. Optik 231, 166454 (2021a)

    Article  ADS  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna. Optik 244, 167595 (2021b)

    Article  ADS  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: "Polarization controlling idea in graphene-based patch antenna. Optik 239, 166795 (2021c)

    Article  ADS  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch. Micro Nanostruct. 168, 207322 (2022)

    Article  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Designing of a circularly polarized reconfigurable graphene-based THz patch antenna with cross-shaped slot. Opt. Quantum Electron. 55(4), 356 (2023a)

    Article  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP. Micro Nanostruct. 175, 207509 (2023b)

    Article  Google Scholar 

  • Kiani, N., Hamedani, F.T., Rezaei, P.: Designing of a circularly polarized reconfigurable graphene-based THz patch antenna with cross-shaped slot. Opt. Quant. Electron. 55, 356 (2023c). https://doi.org/10.1007/s11082-023-04617-y

    Article  Google Scholar 

  • Larki, F., Kameli, P., Nikmanesh, H., Jafari, M., Salamati, H.: The influence of external magnetic field on the pulsed laser deposition growth of graphene on nickel substrate at room temperature. Diam. Relat. Mater. Relat. Mater. 93, 233–240 (2019)

    Article  ADS  Google Scholar 

  • Liu, X., Schmitt, L., Sievert, B., Lipka, J., Geng, C., Kolpatzeck, K., Erni, D., et al.: Terahertz beam steering using a MEMS-based reflectarray configured by a genetic algorithm. IEEE Access 10, 84458–84472 (2022)

    Article  Google Scholar 

  • Lucyszyn, S.: Evaluating surface impedance models for terahertz frequencies at room temperature. Piers 3(4), 554–559 (2007)

    Article  Google Scholar 

  • Luo, Y., Zeng, Q., Yan, X., Yong, Wu., Qichao, Lu., Zheng, C., Nan, Hu., Xie, W., Zhang, X.: Graphene-based multi-beam reconfigurable THz antennas. IEEE Access 7, 30802–30808 (2019)

    Article  Google Scholar 

  • Lv, X.-L., Bian, Wu., Zhao, Y.-T., Hao-Ran, Zu., Wei-Bing, Lu.: Dual-band dual-polarization reconfigurable THz antenna based on graphene. Appl. Phys. Express 13(7), 075007 (2020)

    Article  ADS  Google Scholar 

  • Moradi, K., Karimi, P.: An enhanced gain of frequency and polarization reconfigurable graphene antenna in terahertz regime. AEU-Int. J. Electron. Commun. 158, 154463 (2023)

    Article  Google Scholar 

  • Nasir, M., Xia, Y., Jiang, M., Zhu, Qi.: A novel integrated Yagi-Uda and dielectric rod antenna with low sidelobe level. IEEE Trans. Antennas Propag. Propag. 67(4), 2751–2756 (2019)

    Article  ADS  Google Scholar 

  • Nasir, M., Xia, Y., Sharif, A.B., Guo, G., Zhu, Q., Ur Rehman, M., Abbasi, Q.H.: A high gain embedded helix and dielectric rod antenna with low side lobe levels for IoT applications. Sensors 22(20), 7760 (2022)

    Article  ADS  Google Scholar 

  • Pawar, A.Y., Sonawane, D.D., Erande, K.B., Derle, D.V.: Terahertz technology and its applications. Drug Invent. Today 5(2), 157–163 (2013)

    Article  Google Scholar 

  • Petrov, V., Pyattaev, A., Moltchanov, D., Koucheryavy, Y.: Terahertz band communications: Applications, research challenges, and standardization activities. In: 2016 8th International Congress on Ultra modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 183–190. IEEE (2016)

  • Rasilainen, K., Phan, T.D., Berg, M., Pärssinen, A., Soh, P.J.: Hardware aspects of sub-THz antennas and reconfigurable intelligent surfaces for 6G applications. IEEE J. Sel. Areas Commun. (2023)

  • Rivera-Lavado, A., García-Muñoz, L.-E., Lioubtchenko, D., Preu, S., Abdalmalak, K.A., Santamaría-Botello, G., Segovia-Vargas, D., Räisänen, A.V.: "Planar lens–based ultra-wideband dielectric rod waveguide antenna for tunable THz and sub-THz photomixer sources. J. Infrared, Millimeter Terahertz Waves 40, 838–855 (2019)

    Article  Google Scholar 

  • Shiau, Y.: Dielectric rod antennas for millimeter-wave integrated circuits. IEEE Trans. Microw. Theory Techn. MTT-24(11), 869–872 (1976)

    Article  ADS  Google Scholar 

  • Singhwal, S.S., Matekovits, L., Kanaujia, B.K., Kishor, J., Fakhte, S., Kumar, A.: Dielectric resonator antennas: applications and developments in multiple-input, multiple-output technology. IEEE Antennas Propag. Mag. Propag. Mag. 64(3), 26–39 (2022). https://doi.org/10.1109/MAP.2021.3089981

    Article  Google Scholar 

  • Song, H.-J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)

    Article  ADS  Google Scholar 

  • Sounas, D.L., Caloz, C.: Gyrotropy and nonreciprocity of graphene for microwave applications. IEEE Trans. Microw. Theory Tech. Microw. Theory Tech. 60(4), 901–914 (2012)

    Article  ADS  Google Scholar 

  • Sugimoto, Y., Sakakibara, K., Kikuma, N.: Narrow-pitch angle multibeam dielectric lens antenna illuminated by dielectric rod antennas. In: 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), pp. 543–544. IEEE (2022)

  • Tamagnone, M., Slipchenko, T.M., Moldovan, C., Liu, P.Q., Centeno, A., Hasani, H., Zurutuza, A., et al.: "Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. Phys. Rev. B 97(24), 241410 (2018)

    Article  ADS  Google Scholar 

  • TDK Corporation, “B66335G2000X127 : Detailed information | ferrites and accessories - ferrite cores,” TDK Product Center, 2023. https://product.tdk.com/en/search/ferrite/ferrite/ferrite-core/info?part_no=B66335G2000X127 (Accessed Sep. 27, 2023).

  • Varshney, G., Debnath, S., Sharma, A.K.: "Tunable circularly polarized graphene antenna for THz applications. Optik 223, 165412 (2020)

    Article  ADS  Google Scholar 

  • Venkatesh, S., Xuyang, Lu., Saeidi, H., Sengupta, K.: A programmable terahertz metasurface with circuit-coupled meta-elements in silicon chips: creating low-cost, large-scale, reconfigurable terahertz metasurfaces. IEEE Antennas Propag. Mag.propag. Mag. 64(4), 110–122 (2022)

    Article  Google Scholar 

  • Wu, G.B., Zeng, Y.-S., Chan, K.F., Qu, S.-W., Chan, C.H.: High-gain circularly polarized lens antenna for terahertz applications. IEEE Antennas Wirel. Propag. Lett. 18(5), 921–925 (2019)

    Article  ADS  Google Scholar 

  • Yang, G., Zhang, N., Song, R., Cui, G., Liu, N., Liu, J.: Terahertz windmill-shaped circularly polarized pattern reconfigurable antenna with MEMS switches. In: 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), pp. i-v. IEEE (2022)

  • Zhang, J., Tao, S., Yan, X., Zhang, X., Guo, J., Wen, Z.: Dual-frequency polarized reconfigurable terahertz antenna based on graphene metasurface and TOPAS. Micromachines 12(9), 1088 (2021a)

    Article  Google Scholar 

  • Zhang, J., Tao, S., Yan, X., Zhang, X., Guo, J., Wen, Z.: Dual-frequency polarized reconfigurable terahertz antenna based on graphene metasurface and TOPAS. Micromachines 12(9), 1088 (2021b). https://doi.org/10.3390/mi12091088

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work is based upon research funded by Iran National Science Foundation (INSF) under project No. 4013198.

Author information

Authors and Affiliations

Authors

Contributions

S. Fakhte wrote the main manuscript text and M.M.Taskhiri prepared Fig. s. All authors reviewed the manuscript.

Corresponding author

Correspondence to Saeed Fakhte.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The Author hereby consents to publication of the Work in Infrared, Millimeter, and Terahertz Waves journal.

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhte, S., Taskhiri, M.M. Graphene-enabled terahertz dielectric rod antenna with polarization reconfiguration. Opt Quant Electron 55, 1258 (2023). https://doi.org/10.1007/s11082-023-05586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05586-y

Keywords

Navigation