Skip to main content
Log in

Extended Lie symmetry approach for mixed fractional derivatives of magneto-electro-elastic circular rod: innovative reduction, conservation laws, optical solitons and bifurcation analysis

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The central objective of this study is to examine how the Lie symmetry technique and conservation law theories can be employed to analyze fractional partial differential equations with a mixed derivative \(\partial _{t}^{2\beta }(u_{x x})\), specifically considering the Riemann–Liouville time-fractional and integer-order x-derivatives. In the beginning, we shed light on the prolongation formula that encompasses the infinitesimal generator, particularly in the presence of mixed derivatives. Following that, through the identification of Lie symmetries, we introduce a comprehensive formula for deriving conservation laws, incorporating the notion of nonlinear self-adjointness. Utilizing the Lie symmetries and an alternative reduction technique, we achieve a novel reduction that eliminates the need for the Erd\(\acute{e}\)lyi-Kober operator. Additionally, family of wave solutions have been obtained corresponding to the longitudinal wave equation in magneto-electro-elastic structures and bifurcation analysis and chaotic analysis has been done for the governing model via Galilean transformation and phase plane portraits have been used to depict the changes in the behavior of the model by changing the values of the potential parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Ali, A.T.: New generalized Jacobi elliptic function rational expansion method. J. Comput. Appl. Math. 235(14), 4117–4127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations Part II: General treatment. Eur. J. Appl. Math. 13(5), 567–585 (2002)

    Article  MATH  Google Scholar 

  • Bakırtaş, İ, Antar, N.: Effect of stenosis on solitary waves in arteries. Int. J. Eng. Sci. 43(8–9), 730–743 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences, Springer, New York (2010)

    Book  MATH  Google Scholar 

  • Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. 227(1), 81–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C., Jiang, Y.L.: Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75(8), 2978–2988 (2018)

    MathSciNet  MATH  Google Scholar 

  • Chen, P., Shen, Y.: Propagation of axial shear magneto-electro-elastic waves in piezoelectric-piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 44, 1511–1532 (2007)

    Article  MATH  Google Scholar 

  • Chen, J.Y., Pan, E., Chen, H.L.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)

    Article  MATH  Google Scholar 

  • Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 3rd edn. Birkhäuser/Springer, New York (2012)

    Book  MATH  Google Scholar 

  • Dorjgotov, K., Ochiai, H., Zunderiya, U.: Lie symmetry analysis of a class of time fractional nonlinear evolution systems. Appl. Math. Comput. 329, 105–117 (2018)

    MathSciNet  MATH  Google Scholar 

  • Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246(5), 403 (1998)

    Article  ADS  MATH  Google Scholar 

  • Frederico, G.S., Torres, D.F.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  ADS  Google Scholar 

  • Gazizov, R.K., Ibragimov, N.H., Lukashchuk, S.Y.: Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 153–163 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guo, B., Pu, X., Huang, F.H.: Fractional Partial Differential Equations and Their Numerical Solutions. World Sci. Publ., Hackensack, NJ (2015)

    Book  MATH  Google Scholar 

  • Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. 333, 311–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov, N.H.: Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor 44(43), 432002 (2011)

    Article  ADS  MATH  Google Scholar 

  • Javid, A., Raza, N., Osman, M.S.: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71, 362 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Kallel, W., Almusawa, H., Mirhosseini-Alizamini, S.M., Eslami, M., Rezazadeh, H., Osman, M.S.: Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion. Res. Phys. 26, 104388 (2021)

    Google Scholar 

  • Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45, 367–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaur, B., Gupta, R.K.: Dispersion analysis and improved F-expansion method for space-time fractional differential equations. Nonlinear Dyn. 96(2), 837–852 (2019)

    Article  MATH  Google Scholar 

  • Khan, K., Akbar, M.A., Rashidi, M.M., Zamanpour, I.: Exact traveling wave solutions of an autonomous system via the enhanced \((G^{\prime }/G)\)-expansion method. Waves Random Complex Media 25(4), 644–655 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic press (2003)

  • Klimek, M.: Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A Math. Theor. 35(31), 6675 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lake, B.M., Yuen, H.C., Ferguson, W.E.: Envelope solitons and recurrence in nonlinear deep water waves: theory and experiment. Rocky Mt. J. Math. 8(1/2), 105–116 (1978)

    MathSciNet  MATH  Google Scholar 

  • Lashkarian, E., Hejazi, S.R., Habibi, N., Motamednezhad, A.: Symmetry properties, conservation laws, reduction and numerical approximations of time-fractional cylindrical-Burgers equation. Commun. Nonlinear Sci. Numer. Simul. 67, 176–191 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leo, R.A., Sicuro, G., Tempesta, P.: A foundational approach to the Lie theory for fractional order partial differential equations. Fract. Calc. Appl. Anal. 20(1), 212–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lukashchuk, S.Y.: Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 80, 791–802 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, X., Pan, Y., Chang, L.: Explicit travelling wave solutions in a magneto-electro-elastic circular rod. Int. J. Comput. Sci. 10, 62–68 (2013)

    Google Scholar 

  • Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014)

    Article  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. John Wiley & Sons Inc, New York (1993)

    MATH  Google Scholar 

  • Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21(2), 194–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Ovsyannikov, L.V.: Group Analysis of Differential Equations. Academic Press Inc, New York (1982)

    Google Scholar 

  • Peyrard, M.: Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17(2), R1 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press Inc., San Diego, CA (1999)

    Google Scholar 

  • Russell, J.S.: Report on Waves: Made to the Meetings of the British Association in 1842–1843 (1845)

  • Sahadevan, R., Prakash, P.: On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos Solit Fractals 104, 107–120 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Samko, S.G., Kilbas,A.A., Marichev. O.I.: Fractional Integrals and Derivatives, Gordon and Breach, Yverdon (1993)

  • Singla, K., Gupta, R.K.: Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws. Nonlinear Dyn. 89, 321–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear .Sci Numer. Simul. 64, 213–231 (2018)

    Article  ADS  MATH  Google Scholar 

  • Wang, G., Kara, A.H., Fakhar, K.: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 82, 281–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, B., Yu, J.G., He, C.F.: Wave propagation in non-homogeneous magneto-electro-elastic plates. J. Sound Vib. 317, 250–264 (2008)

    Article  Google Scholar 

  • Yadav, V., Gupta, R.K.: Optical soliton solutions of the conformable time-fractional Radhakrishnan-Kundu-Lakshmanan model. Opt. Quant. Electron. 54, 692 (2022)

    Article  Google Scholar 

  • Yang, X.J., Baleanu, D.I., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Elsevier/Academic Press, Amsterdam (2016)

    MATH  Google Scholar 

  • Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. Frac. Calc. Appl. Anal. 10(2), 169–187 (2007)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Guo, L.L.: An alternative technique for the symmetry reduction of time-fractional partial differential equation. Math. Methods Appl. Sci. 44(18), 14957–14962 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Lin, Z.X.: Local symmetry structure and potential symmetries of time-fractional partial differential equations. Stud. Appl. Math. 147(1), 363–389 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Zheng, J.: Symmetry structure of multi-dimensional time-fractional partial differential equations. Nonlinearity 34(8), 5186–5212 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has received funding from the Council of Scientific and Industrial Research, New Delhi, India (CSIR file no. 09/1152(0017)/2019 -EMR-1). The support of the CSIR is greatly acknowledged.

Funding

This research has received funding from the Council of Scientific and Industrial Research, New Delhi, India (CSIR file no. 09/1152(0017)/2019 -EMR-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated equally to reach the final version of the paper. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Vikash Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest concerning the publication of this manuscript.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Yadav, V. Extended Lie symmetry approach for mixed fractional derivatives of magneto-electro-elastic circular rod: innovative reduction, conservation laws, optical solitons and bifurcation analysis. Opt Quant Electron 55, 1088 (2023). https://doi.org/10.1007/s11082-023-05352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05352-0

Keywords

Mathematics Subject Classification

Navigation