Skip to main content

Advertisement

Log in

Spectral broadening in tight confinement geometry of a random fiber laser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a random Raman fiber laser pumped by a continuous-wave 1480 nm source. The backward pumping feedback loop allows a single direction of 1584 nm wave propagation under tighter confinement of dispersion compensating fiber (DCF). This geometry that implies a stronger Kerr-lensing effect supports two types of nonlinear broadening that were achieved in the stable output power generation. The first that agrees well to wave kinetics theory favors 1.76–3.37 nm spectral progress. Against this flow, another type of wider broadening begun at 4.88 nm before reducing gradually to 4.05 nm with the increase in pump power. The former corresponds to a maximum of 6.3 times broadening ratio with respect to the pump linewidth. In contrast without the tighter confinement geometry, fluctuations in the nonlinearity growth from 1.58 to 3.53 nm bandwidth was realized. These ascertain the double roles of DCF as a stabilizing factor as well as for dispersion management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data are available on request due to privacy or other restrictions.

References

  • Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., Podivilov, E.V.: Spectral broadening in Raman fiber lasers. Opt. Lett. 31(20), 3007–3009 (2006)

    Article  ADS  Google Scholar 

  • Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., Podivilov, E.V.: Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser. JOSA B 24(8), 1729–1738 (2007)

    Article  ADS  Google Scholar 

  • Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., Podivilov, E.V.: Turbulence-induced square-root broadening of the Raman fiber laser output spectrum. Opt. Lett. 33(6), 633–635 (2008)

    Article  ADS  Google Scholar 

  • Babin, S.A., El-Taher, A.E., Harper, P., Podivilov, E.V., Turitsyn, S.K.: Tunable random fiber laser. Phys. Rev. A 84(2), 021805 (2011)

    Article  ADS  Google Scholar 

  • Babin, S.A., Zlobina, E.A., Kablukov, S.I., Podivilov, E.V.: High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth. Sci. Rep. 6(1), 22625 (2016)

    Article  ADS  Google Scholar 

  • Churkin, D.V., Babin, S.A., El-Taher, A.E., Harper, P., Kablukov, S.I., Karalekas, V., Ania-Castañón, J.D., Podivilov, E.V., Turitsyn, S.K.: Raman fiber lasers with a random distributed feedback based on Rayleigh scattering. Phys. Rev. A 82(3), 033828 (2010)

    Article  ADS  Google Scholar 

  • Churkin, D.V., Vatnik, I.D., Turitsyn, S.K., Babin, S.A.: Random distributed feedback Raman fiber laser operating in a 1.2 μm wavelength range. Laser Phys. 21, 1525–1529 (2011)

    Article  ADS  Google Scholar 

  • Churkin, D.V., Kolokolov, I.V., Podivilov, E.V., Vatnik, I.D., Nikulin, M.A., Vergeles, S.S., Terekhov, I.S., Lebedev, V.V., Falkovich, G., Babin, S.A., Turitsyn, S.K.: Wave kinetics of random fibre lasers. Nat. Commun. 6(1), 6214 (2015a)

    Article  ADS  Google Scholar 

  • Churkin, D.V., Sugavanam, S., Vatnik, I.D., Wang, Z., Podivilov, E.V., Babin, S.A., Rao, Y., Turitsyn, S.K.: Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photon. 7(3), 516–569 (2015b)

    Article  Google Scholar 

  • Dong, J., Zhang, L., Zhou, J., Pan, W., Gu, X., Feng, Y.: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)

    Article  ADS  Google Scholar 

  • Guo, J., Rao, Y., Zhang, W., Cui, Z., Liu, A., Yan, Y.: Dental imaging with near-infrared transillumination using random fiber laser. Photonics Sens. 10, 333–339 (2020)

    Article  ADS  Google Scholar 

  • Jia, X.H., Rao, Y.J., Peng, F., Wang, Z.N., Zhang, W.L., Wu, H.J., Jiang, Y.: Random-lasing-based distributed fiber-optic amplification. Opt. Express 21(5), 6572–6577 (2013)

    Article  ADS  Google Scholar 

  • Karalekas, V., Ania-Castañón, J.D., Harper, P., Babin, S.A., Podivilov, E.V., Turitsyn, S.K.: Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers. Opt. Express 15(25), 16690–16695 (2007)

    Article  ADS  Google Scholar 

  • Keiser, G.: Optical fiber communications, 5th edn. McGraw-Hill (2015)

    Google Scholar 

  • Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)

    Article  ADS  Google Scholar 

  • Kuang, Q., Zhan, L., Gu, Z., Wang, Z.: High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser. J. Lightwave Technol. 33(2), 391–395 (2015a)

    Article  ADS  Google Scholar 

  • Kuang, Q., Zhan, L., Wang, Z., Huang, M.: Up to the 1552nd order passively harmonic mode-locked Raman fiber laser. IEEE Photonics Technol. Lett. 27(20), 2205–2208 (2015b)

    Article  ADS  Google Scholar 

  • Lagatsky, A.A., Brown, C.T.A., Sibbett, W.: Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb: KYW laser. Opt. Express 12(17), 3928–3933 (2004)

    Article  ADS  Google Scholar 

  • Ma, R., Rao, Y.J., Zhang, W.L., Hu, B.: Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019)

    Google Scholar 

  • Pan, W., Zhang, L., Jiang, H., Yang, X., Cui, S., Feng, Y.: Ultrafast Raman fiber laser with random distributed feedback. Laser Photonics Rev. 12(4), 1700326 (2018)

    Article  ADS  Google Scholar 

  • Sarmani, A.R., Bakar, M.A., Bakar, A.A.A., Adikan, F.M., Mahdi, M.A.: Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser. Opt. Express 19(15), 14152–14159 (2011)

    Article  ADS  Google Scholar 

  • Sarmani, A.R., Bakar, M.A., Adikan, F.M., Mahdi, M.A.: Laser parameter variations in a rayleigh scattering-based raman fiber laser with single fiber Bragg grating reflector. IEEE Photonics J. 4(2), 461–466 (2012)

    Article  ADS  Google Scholar 

  • Smirnov, S.V., Churkin, D.V.: Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Opt. Express 21(18), 21236–21241 (2013)

    Article  ADS  Google Scholar 

  • Spence, D.E., Kean, P.N., Sibbett, W.: 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett. 16(1), 42–44 (1991)

    Article  ADS  Google Scholar 

  • Supradeepa, V.R., Feng, Y., Nicholson, J.W.: Raman fiber lasers. J. Opt. 19(2), 023001 (2017)

    Article  ADS  Google Scholar 

  • Turitsyn, S.K., Babin, S.A., El-Taher, A.E., Harper, P., Churkin, D.V., Kablukov, S.I., Ania-Castañón, J.D., Podivilov, E.V.: Random distributed feedback fibre laser. Nat. Photonics 4(4), 231–235 (2010)

    Article  ADS  Google Scholar 

  • Turitsyn, S.K., Babin, S.A., Churkin, D.V., Vatnik, I.D., Nikulin, M., Podivilov, E.V.: Random distributed feedback fibre lasers. Phys. Rep. 542(2), 133–193 (2014)

    Article  ADS  Google Scholar 

  • Vatnik, I.D., Churkin, D.V., Babin, S.A., Turitsyn, S.K.: Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Opt. Express 19(19), 18486–18494 (2011)

    Article  ADS  Google Scholar 

  • Vatnik, I.D., Churkin, D.V., & Babin, S.A.: Spectral width optimization in random DFB fiber laser. In: Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE (2013)

  • Wang, Z.N., Rao, Y.J., Wu, H., Li, P.Y., Jiang, Y., Jia, X.H., Zhang, W.L.: Long-distance fiber-optic point-sensing systems based on random fiber lasers. Opt. Express 20(16), 17695–17700 (2012)

    Article  ADS  Google Scholar 

  • Xu, J., Lou, Z., Ye, J., Wu, J., Leng, J., Xiao, H., Zhang, H., Zhou, P.: Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Opt. Express 25(5), 5609–5617 (2017a)

    Article  ADS  Google Scholar 

  • Xu, J., Ye, J., Liu, W., Wu, J., Zhang, H., Leng, J., Zhou, P.: Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser. Photonics Res. 5(6), 598–603 (2017b)

    Article  Google Scholar 

  • Xu, J., Wu, J., Ye, J., Song, J., Yao, B., Zhang, H., Leng, J., Zhang, W., Zhou, P., Rao, Y.: Optical rogue wave in random fiber laser. Photonics Res. 8(1), 1–7 (2020)

    Article  Google Scholar 

  • Yao, B.C., Rao, Y.J., Wang, Z.N., Wu, Y., Zhou, J.H., Wu, H., Fan, M.Q., Cao, X.L., Zhang, W.L., Chen, Y.F., Li, Y.R., Churkin, D., Turitsyn, S.K., Wong, C.W.: Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci. Rep. 5(1), 18526 (2015)

    Article  ADS  Google Scholar 

  • Zhang, W.L., Rao, Y.J., Zhu, J.M., Wang, Z.X.Y.Z.N., Jia, X.H.: Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity. Opt. Express 20(13), 14400–14405 (2012)

    Article  ADS  Google Scholar 

  • Zhang, C., Sun, J., Jian, S.: A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser. Opt. Commun. 288, 97–100 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks to David W Peckham and Howard Trieu from OFS Optics for their invaluable contributions to advise us on the technical properties of the fibers.

Funding

This work was funded in part by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS/1/2018/STG02/UPM/02/8) and the King Saud University, Kingdom of Saudi Arabia, under Researchers Supporting Project (RSP2023R336).

Author information

Authors and Affiliations

Authors

Contributions

ARS: methodology, validation, investigation, writing—original draft. NMY: formal analysis, visualization. AWA-A: visualization. MTA: funding acquisition. NHZ: validation. EKN: project administration. MAM: conceptualization, writing—review & editing.

Corresponding authors

Correspondence to Abdul Rahman Sarmani or Mohd Adzir Mahdi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable, this work does not involve neither human nor animal as samples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmani, A.R., Mohd Yusoff, N., Al-Alimi, A.W. et al. Spectral broadening in tight confinement geometry of a random fiber laser. Opt Quant Electron 55, 729 (2023). https://doi.org/10.1007/s11082-023-05010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05010-5

Keywords

Navigation