Skip to main content
Log in

50G-next generation passive optical networks stage 2 using millimeter wave over fiber technique under the ITU-T G.9804 standardization

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the 50 Gbps next generation passive optical network stage 2 (50G- NGPON2) architecture is proposed via converging millimeter wave (MMWave) over fiber technology to meet the requirements of fifth generation (5G) fronthaul network such as enormous demand of high transmission rate and huge bandwidth. It uses the non-return to zero (NRZ) line code to generate pulse for 50 Gbps of data per channel, 28 GHz MMWave spectrum band over 60 km of bi-directional fiber span under the ITU-T G.9804 standardization. Two ideal erbium dopped fiber amplifiers (EDFA) with the gain of 10 dB and 5 dB respectively are used to amplify the signal on the transmitter side before transmission and receiver side after transmission. Outcomes of the proposed system demonstrate the network structure performance efficiency via Q-Factor (> 6), error rate, spectrums, and eye diagram. The variations of the Q-Factor for all optical network units (ONUs) during downstream and channels during upstream can be seen at the different fiber spans. Considering the scope of the future, in the area of digital processing, a single channel 50G-PON using 16-QAM is presented to improve the modulation and demodulation of MMWave spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

We have all data and material, interested can get it from us.

References

  • Altabas, J.A., Valdecasa, G.S., Suhr, L.F., Didriksen, M., Lazaro, J.A., Garces, I., Monroy, I.T., Clausen, A.T., Jensen, J.B.: Real-time 10Gbps polarization independent quasicoherent receiver for NG-PON2 access networks. J. Lightw. Technol. 37(2), 651–656 (2019). https://doi.org/10.1109/JLT.2018.2880361

    Article  ADS  Google Scholar 

  • Anand Prem, P.K., Chakrapani, A.: Optical Millimeter Wave Generation - A Research Perspective. February, i–xii, 1–79. (2017).

  • Esraa Zuhair, S., Alnajjar, S.H., Arif, F.A.R.: Performance analysis of WDM-hybrid RFoFSO\FO system under different weather conditions utilizing a hybrid optical amplifier. IOP Conf. Ser. Mater. Sci. Eng. 1105(1), 012035 (2021)

    Article  Google Scholar 

  • Fice, M.J., Rouvalis, E., Dijk, F. Van Accard, A., Lelarge, F., Renaud, C.C., Seeds, A.J.: Photonic wireless transmission system. 20(2), 1769–1774. (2012)

  • Gadze, J.D., Akwafo, R., Agyekum, K.A., Opare, K.A.: A 100 Gbps OFDM-based 28 GHz millimeter-wave radio over fiber fronthaul system for 5G. Optics 2, 70–86 (2021)

    Article  Google Scholar 

  • Houtsma, V., Van Veen, D.: A study of options for high-speed TDM-PON beyond 10G. J. Lightw. Technol. 35(4), 1059–1066 (2017). https://doi.org/10.1109/JLT.2016.2638121

    Article  ADS  Google Scholar 

  • Houtsma, V., Van Veen, D., Harstead, E.: Recent progress on standardization of next-generation 25, 50, and 100G EPON. J. Lightw. Technol. 35(6), 1228–1234 (2017). https://doi.org/10.1109/JLT.2016.2637825

    Article  ADS  Google Scholar 

  • Hussain, M.A.: Design and implementation of gigabit passive optical network. Int. J. Res. Appl. Sci. Eng. Technol. 8(10), 121–127 (2020)

    Article  Google Scholar 

  • Lagkas, T., Klonidis, D., Sarigiannidis, P., Tomkos, I.: 5G/NGPON evolution and convergence: developing on spatial multiplexing of optical fiber links for 5G infrastructures. Fiber Integr. Opt. 39(1), 4–23 (2020). https://doi.org/10.1080/01468030.2020.1725184

    Article  ADS  Google Scholar 

  • Latest Progress of 50G PON (Passive Optical Network) Technology in 2021. (n.d.).

  • Latunde, A.T., Papazafeiropoulos, A., Kourtessis, P., Senior, J.M.: Co-existence of OFDM and FBMC for resilient photonic millimeter-wave 5G mobile fronthaul. Photon. Netw. Commun. 37(3), 335–348 (2019). https://doi.org/10.1007/s11107-019-00845-z

    Article  Google Scholar 

  • Li, X., Xu, Y., Xiao, J., Yu, J.: W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator. IEEE Photon. J. 8(2), 1–10 (2016). https://doi.org/10.1109/JPHOT.2016.2535203

    Article  Google Scholar 

  • Li, B., Zhang, K., Zhang, D., He, J., Dong, X., Liu, Q., Li, S.: DSP enabled next generation 50G TDM-PON. J. Opt. Commun. Netw. 12(9), D1–D8 (2020). https://doi.org/10.1364/JOCN.391904

    Article  Google Scholar 

  • Mohsen, D.E., Hammadi, A.M., Alaskary, A.J.: Design and Implementation of 1.28 Tbps DWDM based RoF system with external modulation and dispersion compensation fiber. J. Phys. Conf. Ser. 1963(1), 012026 (2021). https://doi.org/10.1088/1742-6596/1963/1/012026

    Article  Google Scholar 

  • QAM modulation vs 64 QAM modulation vs 256 QAM modulation. (n.d.).

  • Rajalakshmi, S., Shankar, T.: Investigation of different modulation formats for extended reach NG-PON2 using RSOA. Int. J. Adv. Comput. Sci. Appl. 10(12), 142–149 (2019)

    Google Scholar 

  • Sharma, D.P., Kumar, S.: Q factor based performance evaluation of bidirectional TDM PON network using hybrid amplifier configurations. Int. J. Comput. Sci. Eng. 6(4), 51–60 (2018)

    Google Scholar 

  • Singh, S., Kaler, R.: Flat-gain L-band Raman-EDFA hybrid optical. IEEE Photon. Technol. Lett. 25(03), 250–252 (2013). https://doi.org/10.1109/LPT.2012.2231406

    Article  ADS  Google Scholar 

  • Singh, S., Kaler, R.: Novel optical flat-gain hybrid amplifier for dense wavelength division multiplexed system. IEEE Photon. Technol. Lett. 26(02), 173–176 (2014). https://doi.org/10.1109/LPT.2013.2291035

    Article  ADS  Google Scholar 

  • Systems, D.: ITU-T. (2021)

  • Van Veen, D.T., Houtsma, V.E.: Symmetrical 25-Gb/s TDM-PON with 315-dB optical power budget using only off-the-shelf 10-Gb/s optical components. J. Lightw. Technol. 34(7), 1636–1642 (2016)

    Article  ADS  Google Scholar 

  • van Veen, D., Houtsma, V.: Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent amplification. In: Optics InfoBase Conference Papers, Part F40-O(January), pp. 4–7. (2017). https://doi.org/10.1364/OFC.2017.Th5A.4

  • Voudoukis, N.F.: Performance analysis , characteristics , and simulation of digital QAM. (2017). https://doi.org/10.24018/ejece.2017.1.1.3

  • Xiao, J., Zhao, C., Feng, X., Dong, X., Zuo, J., Ming, J., Zhou, Y.: Review on the millimeter-wave generation techniques based on photon assisted for the RoF network system. Adv. Condens. Matter Phys. 2020, 1–14 (2020)

    Google Scholar 

  • Yau, I., Sani, S.M., Usman, A.D., Tekanyi, A.M.S., Yaro, A.S., Bello, H.: Design of radio over plastic optical fibre for broadband indoor access network. FUOYE J. Eng. Technol. 6(4), 4–9 (2021)

    Article  Google Scholar 

  • Zeb, K., Zhang, X., Lu, Z.: High capacity mode division multiplexing based MIMO enabled all-optical analog millimeter-wave over fiber fronthaul architecture for 5G and beyond. IEEE Access 7, 89522–89533 (2019). https://doi.org/10.1109/ACCESS.2019.2926276

    Article  Google Scholar 

  • Zhang, D., Liu, D., Wu, X., Nesset, D.: Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 12(10), D99 (2020). https://doi.org/10.1364/jocn.391830

    Article  Google Scholar 

  • Zhou, W., Qin, C.: Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion. Opt. Commun. 398(April), 101–106 (2017). https://doi.org/10.1016/j.optcom.2017.04.043

    Article  ADS  Google Scholar 

  • ZTE.: In: White Paper on 50G-PON Technology. (2020)

Download references

Funding

Authors did not receive support from any organization.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Harpreet Kaur.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Singh, S., Kaur, R. et al. 50G-next generation passive optical networks stage 2 using millimeter wave over fiber technique under the ITU-T G.9804 standardization. Opt Quant Electron 55, 449 (2023). https://doi.org/10.1007/s11082-023-04732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04732-w

Keywords

Navigation