Skip to main content
Log in

Optical wave propagation to a nonlinear phenomenon with pulses in optical fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We examine the three-component coupled nonlinear Schrodinger equation that is used for the propagation of pulses to the nonlinear optical fiber. Multi-component NLSE equations have gained popularity because they can be used to demonstrate a vast array of complex observable systems as well as more kinetic patterns of localized wave solutions. The solutions are obtained by using the generalized exponential rational function method, a relatively new integration tool. We extract various optical solitons in different forms. Moreover, exponential, periodic solutions and solutions of the hyperbolic type are guaranteed. In addition to providing previously extracted solutions, the used approach also extracts new exact solutions and is beneficial for elucidating nonlinear partial differential equations. The graphs of different shapes are sketched for the attained solutions and some physical properties- are raised. The reported solutions in this work are new as they are compared to earlier similar studies. The results of this paper show that the used method is effective at improving the nonlinear dynamical behavior of a system. The findings show that the computational approach taken is successful, simple, and applicable even to complicated phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All the data and details of the results in this paper can be found within the paper.

References

  • Ahmed, H.M., Rabie, W.B.: Structure of optical solitons in magneto-optic waveguides with dual-power law nonlinearity using modified extended direct algebraic method. Opt. Quant. Electron. 53, 438 (2021)

    Google Scholar 

  • Ali, M.R.: A truncation method for solving the time-fractional Benjamin–Ono equation. J. Appl. Math. 2019, 3456848 (2019)

    MathSciNet  MATH  Google Scholar 

  • Ali, M.R., Baleanu, D.: Haar wavelets scheme for solving the unsteady gas flow in four-dimensional. Therm. Sci. 24, 1357–1367 (2020)

    Google Scholar 

  • Ali, M.R., Hadhoud, A.R.: Hybrid Orthonormal Bernstein and Block–Pulse functions wavelet scheme for solving the 2D Bratu problem. Results Phys. 12, 525–530 (2019)

    ADS  Google Scholar 

  • Ali, M.R., Hadhoud, A.R., Srivastava, H.M.: Solution of fractional Volterra–Fredholm integrodifferential equations under mixed boundary conditions by using the HOBW method. Adv. Differ. Equ. 2019, 115 (2019a)

    MATH  Google Scholar 

  • Ali, M.R., Mousa, M.M., Ma, W.X.: Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method. Adv. Math. Phys. (2019b). https://doi.org/10.1155/2019/1705651

    Article  MathSciNet  MATH  Google Scholar 

  • Ali, M., Alquran, M., Salman, O.: Bani: a variety of new periodic solutions to the damped (2+1)-dimensional Schrodinger equation via the novel modified rational sine-cosine functions and the extended tanh–coth expansion methods. Results Phys. 37, 105462 (2022)

    Google Scholar 

  • Ali, K., Rizvi, S.T.R., Nawaz, B., Younis, M.: Optical solitons for paraxial wave equation in Kerr media. Mod. Phys. Lett. B 33(03), 1950020 (2019)

    ADS  MathSciNet  Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quant. Electron. 54, 666 (2022)

    Google Scholar 

  • Alquran, M., Jaradat, I.: Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schrodinger with nonlinearity Kerr laws. Nonlinear Dyn. 96, 115–121 (2019)

    MATH  Google Scholar 

  • Alquran, M., Jaradat, I., Sulaiman, T.A., Yusuf, A.: Heart-cusp and bell-shaped-cusp optical solitons for an extended two-mode version of the complex Hirota model: application in optics. Opt. Quant. Electron. 53, 26 (2021)

    Google Scholar 

  • Atas, S.S., Ali, K.K., Sulaiman, T.A., Bulut, H.: Optical solitons to the Fokas system equation in monomode optical fbers. Opt. Quant. Electron. 54, 707 (2022)

    Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quant. Electron. 53, 522 (2021)

    Google Scholar 

  • Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik 127(18), 7250–7257 (2016)

    ADS  Google Scholar 

  • Bulut, H., Isik, H.A., Sulaiman, T.A.: On some complex aspects of the (2+1)-dimensional Broer–Kaup–Kupershmidt system. ITM Web Conf. 13, 01019 (2017)

    Google Scholar 

  • Bulut, H., Sulaiman, T.A., Demirdag, B.: Dynamics of soliton solutions in the chiral nonlinear Schrodinger equations. Nonlinear Dyn. 91(3), 1985–1991 (2018)

    Google Scholar 

  • Cheemaa, N., Younis, M.: New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 83, 1395–1401 (2016)

    MathSciNet  MATH  Google Scholar 

  • Eslami, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in (1+2)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)

    MathSciNet  Google Scholar 

  • Eslami, M., Neirameh, A.: New exact solutions for higher order nonlinear Schrodinger equation in optical fibers. Opt. Quant. Electron. 50(1), 47 (2018)

    Google Scholar 

  • Gao, W., Ghanbari, B., Günerhan, H., Baskonus, H.M.: Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation. Mod. Phys. Lett. B 34(3), 2050034 (2020)

    ADS  Google Scholar 

  • Gao, W., Senel, M., Yel, G., Baskonus, H.M., Senel, B.: New complex wave patterns to the electrical transmission line model arising in network system. Aims Math. 5(3), 1881–1892 (2020b)

    MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Aguilar, J.F.G.: The generalized exponential rational function method for Radhakrishnan–Kundu–Lakshmanan equation with \(\beta\)-conformable time derivative. Rev. Mex. Fis. 65(5), 503–518 (2019)

    MathSciNet  Google Scholar 

  • Ghanbari, B., Osman, M.S., Baleanu, D.: Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative. Mod. Phys. Lett. A 34(20), 1950155 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Guo, D., Tian, S.F., Zhang, T.T., Li, J.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrodinger system. Nonlinear Dyn. 94(4), 2749–2761 (2018)

    Google Scholar 

  • Jaradat, I., Alquran, M., Momani, S., Biswas, A.: Dark and singular optical solutions with dual-mode nonlinear Schrodinger’s equation and Kerr-law nonlinearity. Optik 172, 822–825 (2018)

    ADS  Google Scholar 

  • Khalil, T.A., Badra, N., Ahmed, H.M., Rabie, W.B.: Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik 253, 168540 (2021)

    ADS  Google Scholar 

  • Khater, M.M.A., Seadawy, A.R., Lu, D.: Optical soliton and rogue wave solutions of the ultra-short femtosecond pulses in an optical fiber via two different methods and its applications. Optik 158, 434–450 (2018)

    ADS  Google Scholar 

  • Kumar, S., Kumar, D.: Generalised exponential rational function method for obtaining numerous exact soliton solutions to a (3+1)-dimensional Jimbo–Miwa equation. Pramana 95, 152 (2021)

    ADS  Google Scholar 

  • Kuo, C.K., Gunay, B., Juan, C.J.: The applications of symbolic computation to exact wave solutions of two HSI-like equations in (2+1)-dimensional. Front. Phys. 11, 1116993 (2023)

    Google Scholar 

  • Lu, D., Seadawy, A.R., Khater, M.M.A.: Dispersive optical soliton solutions of the generalized Radhakrishnan–Kundu–Lakshmanan dynamical equation with power law nonlinearity and its applications. Optik 164, 54–64 (2018)

    ADS  Google Scholar 

  • Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrodinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)

    MathSciNet  MATH  Google Scholar 

  • Nawaz, B., Ali, K., Abbas, S.O., Rizvi, S.T.R., Zhou, Q.: Optical solitons for non-Kerr law nonlinear Schrodinger equation with third and fourth order dispersions. Chin. J. Phys. 60, 133–140 (2019)

    MathSciNet  Google Scholar 

  • Ozkan, Y.S.: The generalized exponential rational function and Elzaki–Adomian decomposition method for the Heisenberg ferromagnetic spin chain equation. Mod. Phys. Lett. B 35(12), 2130003 (2021)

    MathSciNet  Google Scholar 

  • Rabie, W.B., Ahmed, H.M.: Optical solitons for multiple-core couplers with polynomial law of nonlinearity using the modified extended direct algebraic method. Optik 258, 168848 (2021)

    ADS  Google Scholar 

  • Rabie, W.B., Ahmed, H.M., Seadawy, A.R., Althobaiti, A.: The higher-order nonlinear Schrodinger’s dynamical equation with fourth-order dispersion and cubic–quintic nonlinearity via dispersive analytical soliton wave solutions. Opt. Quant. Electron. 53, 668 (2021a)

    Google Scholar 

  • Rabie, W.B., Seadawy, A.R., Ahmed, H.M.: Highly dispersive optical solitons to the generalized third-order nonlinear Schrodinger dynamical equation with applications. Optik 241, 167109 (2021b)

    ADS  Google Scholar 

  • Rizvi, S.T.R., Ahmad, K.A.M.: Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 204, 164–181 (2020)

    Google Scholar 

  • Seadawy, A.R., Ahmed, H.M., Rabie, W.B., Biswas, A.: An alternate pathway to solitons in magneto-optic waveguides with triple-power law nonlinearity. Optik 231, 166480 (2021)

    ADS  Google Scholar 

  • Sulaiman, T.A.: Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis. Phys. Scr. 95, 065201 (2020)

    ADS  Google Scholar 

  • Sulaiman, T.A., Yokus, H.B.A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. 93(5), 647–656 (2019)

    ADS  Google Scholar 

  • Tao, X., Yong, C.: Localized waves in three-component coupled nonlinear Schrödinger equation. Chin. Phys. B 25(9), 090201 (2016)

    Google Scholar 

  • Wang, X.B., Han, B.: The three-component coupled nonlinear Schrodinger equation: rogue waves on a multi-soliton background and dynamics. EPL 126, 15001 (2019)

    Google Scholar 

  • Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion. Opt. Quant. Electron. 53, 490 (2021)

    Google Scholar 

  • Younas, U., Sulaiman, T.A., Ren, J.: Dynamics of optical pulses in dual-core optical fibers modelled by decoupled nonlinear Schrodinger equation via GERF and NEDA techniques. Opt. Quant. Electron. 54, 738 (2022)

    Google Scholar 

  • Younas, B., Younis, M.: Chirped solitons in optical monomode fibres modelled with Chen–Lee–Liu equation. Pramana J Phys (2020). https://doi.org/10.1007/s12043-019-1872-6

    Article  Google Scholar 

  • Younis, M., Bilal, M., Rehman, S.U., Younas, U., Rizvi, S.T.R.: Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect. Int. J. Mod. Phys. B 34(11), 2050113 (2020b)

    ADS  MathSciNet  MATH  Google Scholar 

  • Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72(6), 065001 (2020a)

    ADS  MATH  Google Scholar 

  • Younis, M., Younas, U., Rehman, S.U., Bilal, M., Waheed, A.: Optical bright–dark and Gaussian soliton with third order dispersion. Optik 134, 233–238 (2017)

    ADS  Google Scholar 

  • Younis, M., Cheemaa, N., Mehmood, S.A., Rizvi, S.T.R., Bekir, A.: A variety of exact solutions to (2+1)-dimensional schrödinger Equation. Wavse Random Complex pp 1–10 (2018)

  • Zhao, L.C., Liu, J.: Rogue-wave solutions of a three-component coupled nonlinear Schrodinger equation. Phys. Rev. E 87, 013201 (2013)

    ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

IJ: Formal analysis, writing-original and original draft. TAS: formal analysis, writing—original draft, Writing—review and editing. ASA: supervision, review and editing. AY: conceptualization, formal analysis, writing—original draft, writing—review and editing. MA: formal analysis and editing. DB: supervision and review.

Corresponding author

Correspondence to Marwan Alquran.

Ethics declarations

Conflict of interest

There is no competing interest whatsoever in this manuscript.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, I., Sulaiman, T.A., Alshomrani, A.S. et al. Optical wave propagation to a nonlinear phenomenon with pulses in optical fiber. Opt Quant Electron 55, 361 (2023). https://doi.org/10.1007/s11082-023-04648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04648-5

Keywords

Navigation