Skip to main content
Log in

Dielectric rod nanoantenna fed by a planar plasmonic waveguide

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents a tapered dielectric rod antenna excited by a folded dipole coplanar waveguide operating at terahertz frequencies. The effective refractive index of the plasmonic transmission line is obtained by two numerical methods, the Finite Element Method and the Finite-Difference Time-Domain, and it is used to obtain the dimensions of the gap connected to the line. We examine the antenna using two lengths of the rod. For 10 and 5 μm tapered rods, impedance bandwidths of 43.47% and 32.55%, maximum gains of 12.58 and 9.84 dB, and radiation efficiencies of more than 72.09%, and 72.15% are achieved, respectively. The dielectric rod nanoantenna operates at all the optical communication band frequencies: original (O), extended (E), short (S), conventional (C), long (L), and ultra-long (U). The structure of the antenna consists of three layers. The substrate is made of silicon oxide. This paper discusses the effect of using a layer of silicon oxide to prevent direct contact between the silicon rod and the hollow T-shaped silver feedline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Balanis, C.A.: Antenna Theory Analysis and Design. Wiley, New York (2005)

    Google Scholar 

  • Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Berlin (2015)

    Google Scholar 

  • Batagelj, B., Eržen, V., Bagan, V., Ignatov, Y.: Optical access network migration from GPON to XG-PON. In: ACCESS 2012: The Third International Conference on Access Networks, pp. 62–67 (2012).

  • Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 024402 (2012)

    Article  ADS  Google Scholar 

  • de la Cruz, S., et al.: Compact surface structures for the efficient excitation of surface plasmon-polaritons. Physica Status Solidi (b) 249(6), 1178–1187 (2012)

    Article  ADS  Google Scholar 

  • Elliot, R.S.: Antenna theory and design, vol. 7632. Prentice-Hall Inc., Englewood Cliffs (1981)

    Google Scholar 

  • Hao, J., Hanson, G.W.: Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotechnol. 5(6), 766–775 (2006)

    Article  ADS  Google Scholar 

  • He, Y., Chen, Y., Zhang, L., Wong, S.-W., Chen, Z.N.: An overview of terahertz antennas. China Commun. 17(7), 124–165 (2020). https://doi.org/10.23919/j.cc.2020.07.011

    Article  Google Scholar 

  • Headland, D., Withayachumnankul, W., Yamada, R., Fujita, M., Nagatsuma, T.: Terahertz multi-beam antenna using photonic crystal waveguide and luneburg lens. APL Photonics 3(12), 126105 (2018)

    Article  ADS  Google Scholar 

  • Huang, T., Liu, G.B., Zhang, H.F., et al.: A new adjustable frequency waveguide circularly polarized antenna based on the solid-state plasma. Appl. Phys. A 125, 660 (2019)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Jornet, J.M., Akyildiz, I.F.: Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–5 (2010)

  • Jornet, J.M., Akyildiz, I.F.: Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE J. Sel. Areas Commun. 31(12), 685–694 (2013). https://doi.org/10.1109/JSAC.2013.SUP2.1213001

    Article  Google Scholar 

  • Jung, K.Y., Teixeira, F.L., Reano, R.M.: Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses. IEEE Photonics Technol. Lett. 21(10), 630–632 (2009)

    Article  ADS  Google Scholar 

  • Kobayashi, S., Mittra, R., Lampe, R.: Dielectric tapered rod antennas for millimeter-wave applications. IEEE Trans. Antennas Propag. 30(1), 54–58 (1982)

    Article  ADS  Google Scholar 

  • Krishna, K.M., Rahman, M.Z.U., Fathima, S.Y.: A new plasmonic broadband branch-line coupler for nanoscale wireless links. IEEE Photonics Technol. Lett. 29(18), 1568–1571 (2017)

    Article  ADS  Google Scholar 

  • Liu, G., Zhang, H., Zeng, L., Huang, T.: A polarization reconfigurable omnidirectional antenna realized by the gravity field tailored. Int. J. RF Microw. Comput. Aided Eng. 29(6), e21707 (2019)

    Article  Google Scholar 

  • Malheiros-Silveira, G.N., Hernandez-Figueroa, H.E.: Dielectric resonator nanoantenna coupled to metallic coplanar waveguide. IEEE Photonics J. 7(1), 1–7 (2015)

    Article  Google Scholar 

  • Malheiros-Silveira, G.N., Wiederhecker, G.S., Hernández-Figueroa, H.E.: Dielectric resonator antenna for applications in nanophotonics. Opt. Express 21, 1234–1239 (2013)

    Article  ADS  Google Scholar 

  • Pierce, D.T., Spicer, W.E.: Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 5(8), 3017–3029 (1972)

    Article  ADS  Google Scholar 

  • Schuller, J.A., Brongersma, M.L.: General properties of dielectric optical antennas. Opt. Express 17(26), 24084–24095 (2009)

    Article  ADS  Google Scholar 

  • Sethi, W.T., Vettikalladi, H., Fathallah, H., Himdi, M.: Hexagonal dielectric loaded nantenna for optical ITU-T C-band communication. In: 2015a IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2015a)

  • Sethi, W.T., Vettikalladi, H., Fathallah, H.: Dielectric resonator nanoantenna at optical frequencies. In: 2015b International Conference on Information and Communication Technology Research (ICTRC) (2015b)

  • Sethi, W.T., Vettikalladi, H., Fathallah, H., Himdi, M.: Nantenna for standard 1550 nm optical communication systems. Int. J. Antennas Propag. 2016, 1–9 (2016)

    Article  Google Scholar 

  • Siegel, H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  ADS  Google Scholar 

  • Siegel, P.H.: THz technology: an overview. Sel. Top. Electron. Syst. Terahertz Sens. Technol. 1–44 (2003)

  • Stutzman, W.L., Thiele, G.A.: Antenna Theory and Design. Wiley (2012)

    Google Scholar 

  • Withayachumnankul, W., Yamada, R., Fujita, M., Nagatsuma, T.: All-dielectric rod antenna array for terahertz communications. APL Photonics 3(5), 051707 (2018)

    Article  ADS  Google Scholar 

  • Zhao, Y., Alu, A.: Optical nanoantennas and their applications. In: 2013 IEEE Radio and Wireless Symposium (2013).

  • Zhang, H.-F., Zhang, H., Yao, Y., Yang, J., Liu, J.-X.: A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J. 10(4), 1–10 (2018)

    Article  Google Scholar 

  • Zhou, H., Chen, X., Espinoza, D.S., Mickelson, A., Filipovic, D.S.: Nanoscale optical dielectric rod antenna for on-chip interconnecting networks. IEEE Trans. Microw. Theory Tech. 59(10), 2624–2632 (2011)

    Article  ADS  Google Scholar 

  • Zou, L., Withayachumnankul, W., Shah, C.M., Mitchell, A., Bhaskaran, M., Sriram, S., Fumeaux, C.: Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21(1), 1344–1352 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SF wrote the main manuscript text and MMT prepared Figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Saeed Fakhte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The author hereby consents to publication of the Work in optic and quantom electronics journal.

Conflict of interest

The authors declare that they have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Fakhte, S. & Hosseini, S.S. Dielectric rod nanoantenna fed by a planar plasmonic waveguide. Opt Quant Electron 55, 115 (2023). https://doi.org/10.1007/s11082-022-04409-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04409-w

Keywords

Navigation