Skip to main content
Log in

Theoretical and experimental study of graphene modified metal vanadate for its application as efficient photocatalyst

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, rGO/BiVO4 nanospheres and cubics were effectively synthesized using hydrothermal technique (with varied concentrations ranging from 0.5 to 2.5 wt%) to design a heterostructure photocatalysts. Ultraviolet visible absorption spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM), and Fourier Transform infrared (FTIR) spectroscopy were used to investigate the optical properties, structural, morphological, bending and stretching vibrations of functional groups of heterostructure composites. Ultraviolet spectroscopy was used to measure the band gap energy of pure BiVO4 and rGO/BiVO4 (2.40–2.31 eV). Under visible photo-illumination (420 nm), the photocatalytic performance of methylene blue (MB & RhB) dyes degradation was studied. Among all samples, the 2.5% rGO/BiVO4 photocatalyst demonstrated the highest photocatalytic activity. Rate constant of pure BiVO4 spherical nanoparticles was also calculated by using simulation (COMSOL 5.3a) which was 0.00464 min−1 as compared to experimental value 0.00656 min−1 for MB and 0.00869 min−1 as compared to experimental value 0.0079 min−1 for RhB. The photocatalysis of MB and RhB dyes for five consecutive cycles demonstrated good recyclability, confirming the composite's reusability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

“All data generated or analyzed during this study are included in this published article”.

References

  • Al-Bastaki, Nader M.: Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chem. Eng. Process.: Process Intensif. 43(7), 935–940 (2004). https://doi.org/10.1016/j.cep.2003.08.003

    Article  Google Scholar 

  • Askari, M.B., Rozati, S.M.: Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media. J. Alloys Comp. 900, 163408 (2022). https://doi.org/10.1016/j.jallcom.2021.163408

    Article  Google Scholar 

  • Askari, M.B., et al.: NiO-Co3O4-rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells. Adv. Mater. Interf. 8(15), 2100149 (2021)

    Article  Google Scholar 

  • Askari, Mohammad Bagher, Salarizadeh, Parisa, Di Bartolomeo, Antonio: NiCo 2O4‐rGO/Pt as a robust nanocatalyst for sorbitol electrooxidation. Int. J. Energy Res. 46(5), 6745–6754 (2022). https://doi.org/10.1002/er.7614

    Article  Google Scholar 

  • Askari, Mohammad Bagher, Rozati, Seyed Mohammad, Di Bartolomeo, Antonio: Fabrication of Mn3O4-CeO2-rGO as nanocatalyst for electro-oxidation of methanol. Nanomaterials 12(7), 1187 (2022). https://doi.org/10.3390/nano12071187

    Article  Google Scholar 

  • Balandin, A.A., Ghosh. Suchismita.

  • Bhatkhande, D.S., et al.: Photocatalytic degradation for environmental applications–a review. J. Chem. Technol. Biotechnol. 77(1), 102–116 (2002)

    Article  Google Scholar 

  • Bodzek, Michał, Rajca, Mariola: Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds/Fotokataliza w oczyszczaniu i dezynfekcji wody część i. podstawy teoretyczne. Ecolog. Chem. Eng. S 19(4), 489–512 (2012). https://doi.org/10.2478/v10216-011-0036-5

    Article  Google Scholar 

  • Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  ADS  Google Scholar 

  • chakrabartiDutta, S.B.: Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazardous Mater. 112(3), 269–278 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.013

    Article  Google Scholar 

  • Chatchai, P., et al.: Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electro. Acta. 54(3), 1147–1152 (2009)

    Article  Google Scholar 

  • Chen, Hai Feng, Chen, Jia Mei, Pan, Zhi Xue: Preparation and Photocatalytic Activity of Cu/BiVO4 by Solid State Grinding Method for Degradation of Methyl Orange. Key Eng. Mater. 703, 321–325 (2016). https://doi.org/10.4028/www.scientific.net/KEM.703.321

    Article  Google Scholar 

  • Chong, M.N., et al.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    Article  ADS  Google Scholar 

  • Coleman, Heather M., Eggins, Brian R., Anthony Byrne, J., Palmer, Fiona L., King, Emma: Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2. Appl. Catalys. B: Environ. 24(1), L1–L5 (2000). https://doi.org/10.1016/S0926-3373(99)00091-0

    Article  Google Scholar 

  • DeLuca, V., et al.: Understanding bilingual brain function and structure changes? U Bet! A Unified Bilingual Experience Trajectory Model. 56, 100930 (2020)

    Google Scholar 

  • DTT, Trinh, et al.: Photocatalytic degradation of organic contaminants by BiVO4/graphene oxide nanocomposite. Walailak J. Sci. Technol. (WJST) 15(11), 787–792 (2018). https://doi.org/10.48048/wjst.2018.5969

    Article  Google Scholar 

  • Esplugas, Santiago, Bila, Daniele M., Luiz, Gustavo T., Krause, Márcia Dezotti.: Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 149(3), 631–642 (2007). https://doi.org/10.1016/j.jhazmat.2007.07.073

    Article  Google Scholar 

  • Fengshou, Yu., Li, Fei, Yao, Tingting, Jian, Du., Liang, Yongqi, Wang, Yong, Han, Hongxian, Sun, Licheng: Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode. ACS Catalys 7(3), 1868–1874 (2017). https://doi.org/10.1021/acscatal.6b03483

    Article  Google Scholar 

  • Gogate, Parag R., Pandit, Aniruddha B.: A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8(3–4), 501–551 (2004). https://doi.org/10.1016/S1093-0191(03)00032-7

    Article  Google Scholar 

  • Gupta, Shipra Mital, Tripathi, Manoj: An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chem. 46(1), 1–9 (2012). https://doi.org/10.1134/S0018143912010134

    Article  Google Scholar 

  • Janitabar-Darzi, Simin, Mahjoub, Ali Reza: Investigation of phase transformations and photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2 composites. J. Alloys Compounds 486(1–2), 805–808 (2009). https://doi.org/10.1016/j.jallcom.2009.07.071

    Article  Google Scholar 

  • Keith Moo-Young, H.: Pulp and paper effluent management. Water Environ.t Res. 79(10), 1733–1741 (2007). https://doi.org/10.2175/106143007X218566

    Article  Google Scholar 

  • Khataee, A.R., Kasiri, M.B.: Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J. Molec. Catal. A: Chem. 328(1–2), 8–26 (2010). https://doi.org/10.1016/j.molcata.2010.05.023

    Article  Google Scholar 

  • Kudo, Akihiko, Omori, Keiko, Kato, Hideki: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999). https://doi.org/10.1021/ja992541y

    Article  Google Scholar 

  • Li, L., Yan, B.: Compounds, BiVO4/Bi2O3 submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation. J. Alloys Comp. 476(1–2), 624–628 (2009)

    Article  Google Scholar 

  • Li, Z., et al.: 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nono Energy 11, 711–718 (2015)

    Article  Google Scholar 

  • Liu, X., Li, J.K.: Effect of pH on the properties of BiVO4 by hydrothermal synthesis method. Solid State Pheno. 281, 813–818 (2018)

    Article  ADS  Google Scholar 

  • Ma, Weiqian, Li, Zhilin, Liu, Wei: Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41(3), 4340–4347 (2015). https://doi.org/10.1016/j.ceramint.2014.11.123

    Article  Google Scholar 

  • Mascolo, G., Comparelli, R., Curri, M.L., Lovecchio, G., Lopez, A., Agostiano, A.: Photocatalytic degradation of methyl red by TiO2: Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J. Hazard. Mater. 142(1–2), 130–137 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.068

    Article  Google Scholar 

  • Nagabhushana, G.P., Nagaraju, G., Chandrappa, G.T.: Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 1(2), 388–394 (2013). https://doi.org/10.1039/C2TA00490A

    Article  Google Scholar 

  • Navarro, P., et al.: Degradation of wine industry wastewaters by photocatalytic advanced oxidation. Water Sci. technol. 51(1), 113–120 (2005)

    Article  Google Scholar 

  • Orimolade, B.O., Arotiba, O.A.J.E.: An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye. Electrocatalysis 10(4), 429–435 (2019)

    Article  Google Scholar 

  • Pal, S., Dutta, S., De, S.: A facile hydrothermal approach to synthesize rGO/BiVO4 photocatalysts for visible light induced degradation of RhB dye. AIP Conference Proceedings. 1953(1), 030205 (2018)

    Article  Google Scholar 

  • Phanichphant, Sukon, et al.: Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-52589-5

    Article  Google Scholar 

  • Pilli, S.K., et al.: Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO 4 photoelectrodes for solar water oxidation. Environ. Sci. 4(12), 5028–5034 (2011)

    Google Scholar 

  • Rajeshwar, K., et al.: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. photochem. photobiol. 9(4), 171–192 (2008)

    Article  Google Scholar 

  • Regmi, Chhabilal, Kim, Tae-Ho., Ray, Schindra Kumar, Yamaguchi, Tokutaro, Lee, Soo Wohn: Cobalt-doped BiVO4 (Co-BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater. Res. Chem. Int. 43(9), 5203–5216 (2017). https://doi.org/10.1007/s11164-017-3036-y

    Article  Google Scholar 

  • Robinson, T., et al.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresou. technol. 77(3), 247–255 (2001)

    Article  Google Scholar 

  • Salarizadeh, P., Askari, M.B., Di Bartolomeo, A.: MoS2/Ni3S2/Reduced graphene oxide nanostructure as an electrocatalyst for alcohol fuel cells. ACS Appl. Nono Mater. 5(3), 3361–3373 (2022)

    Article  Google Scholar 

  • Schneider, Jenny, Matsuoka, Masaya, Takeuchi, Masato, Jinlong Zhang, Yu., Horiuchi, Masakazu Anpo, Bahnemann, Detlef W.: Understanding TiO 2 photocatalysis: mechanisms and materials. Chem Rev 114(19), 9919–9986 (2014)

    Article  Google Scholar 

  • Shantha, K., Subbanna, G.N., Varma, K.B.R.: Mechanically activated synthesis of nanocrystalline powders of ferroelectric bismuth vanadate. J. Solid State Chem. 142(1), 41–47 (1999). https://doi.org/10.1006/jssc.1998.7981

    Article  ADS  Google Scholar 

  • Shinde, S., et al.: Photocatalytic activity of sea water using TiO2 catalyst under solar light. J. Photochem. Photobiol. Biology. 103(2), 111–117 (2011)

    Article  ADS  Google Scholar 

  • Soltani, Tayyebeh, Tayyebi, Ahmad, Lee, Byeong-Kyu.: Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J. Environ. Manag. 232, 713–721 (2019). https://doi.org/10.1016/j.jenvman.2018.11.133

    Article  Google Scholar 

  • Tahir, M.B., et al.: Role of rGO to improve the performance of BiVO 4 nanostructures for efficient removal of heavy metals. Appl. Nono Sci. 10(5), 1421–1432 (2020)

    Google Scholar 

  • Tao, S.-Q., et al.: Low-dose topical 5-aminolevulinic acid photodynamic therapy in the treatment of different severity of acne vulgaris. Cell Biochem. Biophys. 73(3), 701–706 (2015)

    Article  Google Scholar 

  • Tücks, Andreas, Beck, Horst P.: The photochromic effect of bismuth vanadate pigments: Investigations on the photochromic mechanism. Dyes Pigments 72(2), 163–177 (2007). https://doi.org/10.1016/j.dyepig.2005.08.027

    Article  Google Scholar 

  • Wang, Min, Niu, Chao, Liu, Qiong, Che, Yinsheng, Liu, Jun: Enhanced photo-degradation methyl orange by N–F co-doped BiVO4 synthesized by sol–gel method. Mater. Sci. Semi. Process. 25, 271–278 (2014). https://doi.org/10.1016/j.mssp.2013.12.031

    Article  Google Scholar 

  • Wang, S., et al.: An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. 129(29), 8620–8624 (2017)

    Article  ADS  Google Scholar 

  • Wang, S., et al.: New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 28(34), 1802685 (2018)

    Article  Google Scholar 

  • Yan, Xin, Cui, Xiao, Li, Binsong, Li, Liang-shi: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letters 10(5), 1869–1873 (2010). https://doi.org/10.1021/nl101060h

    Article  ADS  Google Scholar 

  • Yang, Hu., Fan, Jun, Chenchen, Pu., Li, Hua, Liu, Enzhou, Xiaoyun, Hu.: Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. J. Photochem. Photobiol. A: Chem. 337, 172–183 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.035

    Article  Google Scholar 

  • Yin, H., et al.: Controlling crystallization and morphologies of monoclinic bismuth vanadate (BiVO4) dendrite with enhanced photocatalytic activities. Int. J. Phys. Sci. 6(17), 4287–4293 (2011)

    Google Scholar 

  • Ying, Y., et al.: Controlled fabrication of bismuth vanadium oxide hierarchical microtubes with enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 32, 82–89 (2015)

    Article  Google Scholar 

  • Yongsheng, Fu., Sun, Xiaoqiang, Wang, Xin: BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 131(1–2), 325–330 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.049

    Article  Google Scholar 

  • Zhang, A.: J Zhang: Synthesis and characterization of Ag/BiVO4 composite photocatalyst. Appl. Surf. Sci. 256(10), 3224–3227 (2010)

    Article  ADS  Google Scholar 

  • Zhang, A., Zhang, J.J.M.L.: Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009)

    Article  Google Scholar 

  • Zhang, Kunfeng, Deng, Jiguang, Liu, Yuxi, Xie, Shaohua, Dai, Hongxing: Photocatalytic removal of organics over BiVO4-based photocatalysts. In: Cao, Wenbin (ed.) Semiconductor photocatalysis - materials, mechanisms and applications. InTech, New Jersey (2016)

    Google Scholar 

  • Zhang, B., et al.: Doping strategy to promote the charge separation in BiVO4 photoanodes. Appl. Catatly. Environ. 211, 258–265 (2017)

    Article  Google Scholar 

  • Zhang, B., et al.: Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. J. Mater. Chem. 7(9), 4415–4419 (2019)

    Article  Google Scholar 

  • Zhu, Y., et al.: Graphene-based ultracapacitors. ECS Meet. Abst. 2(6), 427–437 (2010)

    Article  Google Scholar 

Download references

Funding

“Not applicable”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Iqbal.

Ethics declarations

Competing interests

“The authors declare that they have no competing interests”.

Consent to participate

“Not applicable”.

Consent to publish

“Not applicable”.

Ethical approval.

“Not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansha, M.S., Iqbal, T. Theoretical and experimental study of graphene modified metal vanadate for its application as efficient photocatalyst. Opt Quant Electron 54, 706 (2022). https://doi.org/10.1007/s11082-022-04114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04114-8

Keywords

Navigation