Skip to main content
Log in

Introduction and propagation properties of circular lorentz-bessel-gaussian beams

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, circular Lorentz–Bessel–Gaussian beams (CLBGBs) are introduced as a novel member of the Lorentz-Gaussian beams family. The analytical expression of the propagation of these beams passing through a paraxial optical ABCD system is derived. The generalized Huygens-Fresnel diffraction integral of the form Collins’s formula and the expansion of the Lorentz distribution in terms of the complete orthonormal basis set of the Hermite-Gauss modes are used. The influences of the beam-order and Bessel part β, Gaussian and Lorentzian waists, and propagation distance z on the propagation of CLBGBs are investigated. Some numerical simulation results are done. The beams family in this work may be useful to the practical applications in free-space optical communications because they have vortex properties with their being experimentally realizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belafhal, A., El Halba, E.M., Usman, T.: An integral transform involving the product of bessel functions and whittaker function and Its application. mathematics subject classification. Int. J. Appl. Comput. Math. 6, 177–188 (2020)

    Article  Google Scholar 

  • Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Du, W., Zhao, C., Cai, Y.: Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system. Optics Lasers Eng 49, 25–31 (2011)

    Article  ADS  Google Scholar 

  • Dumke, W.P.: The angular beam divergence in double-heterojunction lasers with very thin active regions. IEEE J. Quantum Electron. 11(7), 400–402 (1975)

    Article  ADS  Google Scholar 

  • Duocastella, M., Arnold, C.B.: Bessel and annular beams for materials processing. Laser Photon. Rev. 6, 607–621 (2012)

    Article  ADS  Google Scholar 

  • Erdelyi A., W. Magnus, F. Oberhettinger: Tables of integral transforms (McGraw-Hill, 1954).

  • Fahrbach, F.O., Simon, P., Rohrbach, A.: Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010)

    Article  ADS  Google Scholar 

  • Garcés-Chávez, V., McGloin, D., Melville, H., Sibbett, W., Dholakia, K.: Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002)

    Article  ADS  Google Scholar 

  • Gawhary, O.E., Severini, S.: Lorentz beams and symmetry properties in paraxial optics. J. Opt. A 8, 409–414 (2006)

    Article  ADS  Google Scholar 

  • Gawhary, O.E., Severini, S.: Lorentz beams as a basis for a new class of rectangular symmetric optical fields. Opt. Commun. 269(2), 274–284 (2007)

    Article  ADS  Google Scholar 

  • Li, D., Imasaki, K.: Vacuum laser-driven acceleration by two slits-truncated Bessel beams. Appl. Phys. Lett. 87, 0911061-1–911063 (2005)

    Google Scholar 

  • Muhsin, C.G., Eyyuboğlu, H.T.: Irradiance fluctuations of partially coherent super Lorentz Gaussian beams. Optics Commun. 284, 4857–4861 (2011)

    Article  ADS  Google Scholar 

  • Naqwi, A., Durst, F.: Focus of diode laser beams: a simple mathematical model. Appl. Opt. 29(12), 1780–1785 (1990)

    Article  ADS  Google Scholar 

  • Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., Betzig, E.: Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011)

    Article  Google Scholar 

  • Rui, F., Zhang, D., Ting, M., Gao, X., Zhuang, S.: Focusing of linearly polarized Lorentz-Gauss beam with one optical vortex. Optik 124, 2969–2973 (2013)

    Article  ADS  Google Scholar 

  • Schimpf, D.N., Schulte, J., Putnam, W.P., Kartner, F.X.: Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration. Opt. Express 20(24), 26852–26867 (2012)

    Article  ADS  Google Scholar 

  • Schmidt, P.P.: A method for the convolution of line shapes which involve the Lorentz distribution. J. Phys. 9, 2331–2339 (1976)

    ADS  Google Scholar 

  • Xu, Y., Zhou, G.: Circular Lorentz-Gauss beams. J. Opt. Soc. Am. A 36, 179–185 (2019)

    Article  ADS  Google Scholar 

  • Yang J., Chen T., Ding G., Yuan X.: Focusing of diode laser beams: a partially coherent Lorentz model. Proceedings. SPIE 6824, 68240A (1–8) (2008).

  • Zhao, C., Cai, Y.: Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis. J. Mod. Opt. 57(5), 375–384 (2010)

    Article  ADS  Google Scholar 

  • Zhou, G.: Fractional Fourier transform of Lorentz-Gauss beams. J. Opt. Soc. Am. A 26, 350–355 (2009a)

    Article  ADS  Google Scholar 

  • Zhou, G.: Beam propagation factors of a Lorentz-Gauss beam. Appl. Phys. B 96, 149–153 (2009b)

    Article  ADS  Google Scholar 

  • Zhou, G.: The beam propagation factors and the kurtosis parameters of a Lorentz beam. Opt. Laser Technol. 41, 953–955 (2009c)

    Article  ADS  Google Scholar 

  • Zhou, G.: Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical. Opt. Express 18(5), 4637–4643 (2010a)

    Article  ADS  Google Scholar 

  • Zhou, G.: Propagation of a Lorentz-Gauss beam through a misaligned optical system. Optics Commun. 283, 1236–1243 (2010b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ahmed Abdulrab Ali Ebrahim and Nabil A. A. Yahya wish to thank the Scholar Rescue Fund, Institute of International Education (IIE-SRF), New York, USA, for the support.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Belafhal.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim, A.A.A., Yahya, N.A.A., Swillam, M.A. et al. Introduction and propagation properties of circular lorentz-bessel-gaussian beams. Opt Quant Electron 54, 434 (2022). https://doi.org/10.1007/s11082-022-03868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03868-5

Keywords

Navigation