Skip to main content
Log in

An efficient 110 × 8 GHz WDM RoF system design for 5G and advance wireless networks

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

High speed networks over long distance with superior transmission efficiency is the need & demand of current and next generation networks. For which, millimetre wave (mm-wave) based many Radio over Fiber (RoF) networks are proposed earlier with several modulation and multiplexing techniques. This paper presents an efficient RoF network comprising of cascaded combination of an Mach Zehnder Modulator (MZM) & a Li-Nb MZM in transmitter alongwith Optical Phase Conjugator in the link to improve the extensive bandwidth quality transmission over longer distances. The proposed model reports successful transmission of 8 channel WDM signal with RF signal of 110 GHz over a range of 100 km at 12 Gbps data rate. The model provides an average Bit Error Rate of 10\(^{-58}\) and an average Q-factor of 15.64 when channel spacing is kept at 0.5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali, A.H., Farhood, A.D.: Design and performance analysis of the wdm schemes for radio over fiber system with different fiber propagation losses. Fibers 7(3), 1–19 (2019)

    Article  Google Scholar 

  • Ali, A.H., Alhamdane, H.J., Hassen, B.S.: Design analysis and performance evaluation of the wdm integration with co-ofdm system for radio over fiber system. Indones. J. Elect. Eng. Comput. Sci. 15, 870–878 (2019)

    Article  Google Scholar 

  • Alishahi, F., Mohajerin-Ariaei, A., Fallahpour, A., Cao, Y., Almaiman, A., Liao, P., Bao, C., Shamee, B., Zou, K., Zhou, H., Willner, A.N., Touch, J.D., Tur, M., Langrock, C., Fejer, M.M., Willner, A.E.: Optical mitigation of interchannel crosstalk for multiple spectrally overlapped 20-gbd qpsk/16-qam wdm channels using nonlinear wave mixing. J. Lightwave Technol. 37(2), 548–554 (2019)

    Article  ADS  Google Scholar 

  • Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala, A., Campuzano, G.: Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun. Surv. Tutor. 15(4), 1593–1619 (2013)

    Article  Google Scholar 

  • Dat, P.T., Kanno, A., Inagaki, K., Rottenberg, F., Yamamoto, N., Kawanishi, T.: High-speed and uninterrupted communication for high-speed trains by ultrafast wdm fiber-wireless backhaul system. J. Lightwave Technol. 37(1), 205–217 (2018)

    Article  ADS  Google Scholar 

  • Garg, D., Nain, A.: Next generation optical wireless communication: a comprehensive review. J. Opt. Commun., 1–16 (2021)

  • Gujral, J., Singh, M.: Performance analysis of 4-channel wdm system with and without edfa 1. Int. J. Electron. Commun. Technol. 4, 70–74 (2013)

    Google Scholar 

  • Jain, D., Iyer, B.: Design and analysis of high speed four channel wdm radio over fiber system for millimeter-wave applications. Int. J. Syst. Assur. Eng. Manag., 1–13 (2021)

  • Kanno, A., Dat, P.T., Yamamoto, N., Kawanishi, T.: Millimeter-wave radio-over-fiber network for linear cell systems. J. Lightwave Technol. 36(2), 533–540 (2018)

    Article  ADS  Google Scholar 

  • Konstantinou, D., Bressner, T.A., Rommel, S., Johannsen, U., Johansson, M.N., Ivashina, M.V., Smolders, A.B., Monroy, I.T.: 5g ran architecture based on analog radio-over-fiber fronthaul over udwdm-pon and phased array fed reflector antennas. Opt. Commun. 454, 110 (2020)

    Article  Google Scholar 

  • Kumar, S., Sharma, D., Singh, R. P.: Performance analysis of radio over fiber link using mzm external modulator. In: Luhach, A. K., Kosa, J. A., Poonia, R. C., Gao, X.-Z., Singh, D. (eds), First International Conference on Sustainable Technologies for Computational Intelligence, pp. 229–240, Singapore, Springer Singapore (2020)

  • Kumar, S., Singh, S.: Mitigating nonlinear effects in 16 channel wdm radio over fiber system with dispersion compensation fiber and fiber bragg grating combination. In: Tiwari, M., Maddila, R. K., Garg, A. K., Kumar, A., Yupapin, P., (eds), Optical and Wireless Technologies, pp. 527–539, Singapore, Springer Singapore (2022)

  • Kumar, S., Nain, A.: Simulative investigation of wdm rof systems including the effect of the raman crosstalk using different modulators. Telecommun. Radio Eng. 75, 1243–1254 (2016)

    Article  Google Scholar 

  • Kumar, S., Sharma, S., Dahiya, S.: Wdm-based 160 gbps radio over fiber system with the application of dispersion compensation fiber and fiber bragg grating. Frontiers Phys. 9, 1–13 (2021)

    Google Scholar 

  • Lakshmijayasimha, P.D., Ahmad, S.T., Martin, E.P., Anandarajah, P.M., Kaszubowska-Anandarajah, A.: Tunable mm-wave a-rof transmission scheme employing an optical frequency comb and dual-stage active demultiplexer. J. Lightwave Technol. 39, 7771–7780 (2021)

    Article  ADS  Google Scholar 

  • Li, C.-Y., Huang, X.-H., Lu, H.-H., Huang, Y.-C., Huang, Q.-P., Tu, S.-C.: A wdm pam4 fso-uwoc integrated system with a channel capacity of 100 gb/s. J. Lightwave Technol. 38(7), 1766–1776 (2020)

    Article  ADS  Google Scholar 

  • Lundberg, L., Karlsson, M., Lorences-Riesgo, A., Mazur, M., Torres-Company, V., Schroder, J., Andrekson, P.A.: Frequency comb-based wdm transmission systems enabling joint signal processing. Appl. Sci. 8(5), 1–25 (2018)

    Article  Google Scholar 

  • Mohamed, A.E.N.A., El-Halawany, M.M., Rashed, A.N.Z., Tabbour, M.S.: High transmission performance of radio over fiber systems over traditional optical fiber communication systems using different coding formats for long haul applications. Int. J. Adv. Eng. Technol. 1(3), 32–45 (2011)

    Google Scholar 

  • Mukherjee, K.: Comparative analysis of various optimization methodologies for wdm system using optisystem. Int. J. Innov. Res. Comput. Commun. Eng., 5, 1–10 (2017)

  • Nain, A., Kumar, S., Singla, S.: Performance estimation of wdm radio-over-fiber links under the influence of srs induced crosstalk. In: Singh, R., Choudhury, S. (eds), Proceeding of International conference on intelligent communication, control and devices, pp. 279–284, Singapore, Springer Singapore (2017)

  • Novak, D., Waterhouse, R.: Advanced radio over fiber network technologies. Opt. Express 21(19), 23001–23006 (2013)

    Article  ADS  Google Scholar 

  • Okamoto, S., Minoguchi, K., Hamaoka, F., Horikoshi, K., Matsushita, A., Nakamura, M., Yamazaki, E., Kisaka, Y.: A study on the effect of ultra-wide band wdm on optical transmission systems. J. Lightwave Technol. 38(5), 1061–1070 (2020)

    Article  ADS  Google Scholar 

  • Sharma, A., Chaudhary, S., Thakur, D., Dhasratan, V.: A cost-effective high-speed radio over fibre system for millimeter wave applications. J. Opt. Commun. 41(2), 177–180 (2020)

    Article  Google Scholar 

  • Singh, K. P., Singh, N., Dhaliwal, E. G. S.: Performance analysis of different wdm systems. Int. J. Eng. Sci. Technol. (IJEST), 4(03), 1140–1144 (2012)

  • TH’NG, G. H.: Towards a cognitive millimeter-wave radio-over-fiber centralized radio access network for future generation small cell deployment, Jul (2021)

  • Thomas, V., Ghafoor, S., El-Hajjar, M., Hanzo, L.: The rap on rof: radio over fiber using radio access point for high data rate wireless personal area networks. IEEE Microw. Mag. 16, 64–78 (2015)

    Article  Google Scholar 

  • Vegas Olmos, J.J., Tafur Monroy, I.: Reconfigurable radio-over-fiber networks. J. Opt. Commun. Netw. 7(11), B23–B28 (2015)

    Article  Google Scholar 

  • Veselka, J.J., Korotky, S.K.: A multiwavelength source having precise channel spacing for wdm systems. IEEE Photonics Technol. Lett. 10(7), 958–960 (1998)

    Article  ADS  Google Scholar 

  • Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 ghz 3-db electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)

    Article  ADS  Google Scholar 

  • Yang, T., Gao, M., Qian, J., Zhang, J., Chen, W.: A flexible millimeter-wave radio-over-fiber system for various transmission bit rate. Opt. Laser Technol. 96, 132–140 (2017)

    Article  ADS  Google Scholar 

  • Zacharias, J., Philip, M., Supriya, S. S., Narayanan, V.: 60 ghz ofdm radio-over-fiber system based on fabry-perot laser diode. In 2017 International conference on circuit ,power and computing technologies (ICCPCT), pp. 1–4, (2017)

  • Zhang, W., An, S., An, J., Bu, X., He, Z.S.: An mpsk millimeter-wave point-to-point link with radio over fiber synchronous baseband receiver. J. Lightwave Technol. 40, 481–489 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DG and AN collectively. The first draft of the manuscript was written by DG. AN commented on previous versions of the manuscript. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhimanyu Nain.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Nain, A. An efficient 110 × 8 GHz WDM RoF system design for 5G and advance wireless networks. Opt Quant Electron 54, 342 (2022). https://doi.org/10.1007/s11082-022-03726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03726-4

Keywords

Navigation