Skip to main content
Log in

Stable single-mode 20-channel uniform buried grating DFB QCL array emitting at ~ 8.3 μm

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A 20-channeldistributed feedback (DFB) quantum cascade laser (QCL) arrays based on uniform buried grating have been demonstrated. In pulsed mode, peak power reaches 80 mW and slope efficiency reaches 167 mW/A for 2.5 mm-long laser in the arrays at room temperature. The loss difference of two band-edge mode increases when reflectivity of the front facet becomes small, which prevents the mode hopping. The device shows linear tuning after the anti-reflectivity coating is deposited in the front facet, maintaining peak power of 64 mW. The whole chip covers a tuning range of 64 cm−1, centering at 8.3 μm, with side-mode-suppression-ratio over 20 dB at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Centeno, R., Marchenko, D., Mandon, J., Cristescu, S.M., Wulterkens, G., Harren, F.J.M.: High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection. Appl. Phys. Lett. 105(26), 261907 (2014)

    Article  ADS  Google Scholar 

  • Corrigan, P., Martini, R., Whittaker, E.A., Bethea, C.: Quantum cascade lasers and the Kruse model in free space optical communication. Opt. Express 17(6), 4355–4359 (2009)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  • Gadedjisso-Tossou, K.S., Stoychev, L.I., Mohou, M.A., Cabrera, H., Vacchi, A.G.: Cavity ring-down spectroscopy for molecular trace gas detection using a pulsed DFB QCL emitting at 6.8 μm. Photon 7(3), 74 (2020)

    Article  Google Scholar 

  • Kosterev, A., Tittel, F.: Chemical sensors based on quantum cascade lasers. IEEE J. Quantum Electron 38(6), 582–591 (2002)

    Article  ADS  Google Scholar 

  • Lee, B.G., Belkin, M.A., Pflugl, C., Diehl, L., Capasso, F.: DFB quantum cascade laser arrays. IEEE J. Quantum Electron 45(5), 554–565 (2009)

    Article  ADS  Google Scholar 

  • Lu, Q.Y., Bai, Y., Bandyopadhyay, N., Slivken, S., Razeghi, M.: 2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98(18), 053103 (2011)

    Google Scholar 

  • Luo, Y., Nakano, Y., Tada, K., Inoue, T., Hosomatsu, H., Iwaoka, H.: Purely gain-coupled distributed feedback semiconductor lasers. Appl. Phys. Lett. 56(17), 1620–1622 (1990)

    Article  ADS  Google Scholar 

  • Namjou, K., et al.: Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum cascade laser. Opt. Lett. 23(3), 219–221 (1998)

    Article  ADS  Google Scholar 

  • Patchell, J., Jones, D., Kelly, B., O'Gorman, J.: Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations. In Proccedings of Society of Photo-Optical Instrumentation Engineers (SPIE) 12, 611334 (2005)

  • Rauter, P., Capasso, F.: Multi-wavelength quantum cascade laser arrays. Laser Photon. Rev. 9(5), 452–477 (2015)

    Article  ADS  Google Scholar 

  • Shi, Y.C., et al.: High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci. Rep. 4, 7377 (2014)

    Article  Google Scholar 

  • Slivken, S., Bandyopadhyay, N., Bai, Y., Lu, Q.Y., Razeghi, M.: Extended electrical tuning of quantum cascade lasers with digital concatenated gratings. Appl. Phys. Lett. 103(23), 231110 (2013)

    Article  Google Scholar 

  • Wang, C.A., et al.: MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. IEEE J. Sel. Top. Quantum Electron 23, 1–13 (2017)

    ADS  Google Scholar 

  • Wang, D.B., et al.: Stable single-mode operation of distributed feedback quantum cascade laser by optimized reflectivity facet coatings. Nano. Res. Lett. 13(1), 061108 (2018)

    Article  Google Scholar 

  • Yan, F.L., et al.: Sample grating distributed feedback quantum cascade laser array. Nano. Res. Lett. 10, 406–410 (2015)

    Article  Google Scholar 

  • Yao, Y., Hoffman, A.J., Gmachl, C.F.: Mid-infrared quantum cascade lasers. Nat. Photon. 6(7), 432–439 (2012)

    Article  ADS  Google Scholar 

  • Zhang, J.C., et al.: Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift. J. Appl. Phys. 115(3), 033106 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Pro-gram of China (2018YFA0209100), the National Natural Science Foundation of China (Grant Nos.61991430, 61774146, 61790583, 61674144, 61774150 and 61805168), the Beijing Municipal Sci-ence & Technology Commission (Grant No. Z20110000 4020006) and the Key Projects of CAS (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027 and XDB43000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinChuan Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Cheng, F., Jia, Z. et al. Stable single-mode 20-channel uniform buried grating DFB QCL array emitting at ~ 8.3 μm. Opt Quant Electron 54, 236 (2022). https://doi.org/10.1007/s11082-022-03644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03644-5

Keywords

Navigation