Skip to main content
Log in

Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A low loss wavelength-selective filter in terahertz frequencies is proposed and demonstrated. The proposed filter consists of a resonator placed in the air with a 15 μm and a bus waveguide with width of 0.35 μm produced on a wafer wirh refractive index of 3.5 and total optical path length of 400 μm. To analysis of the structure, finite difference time domain is applied. To benchmark the performance of the proposed filter several practical parameters including geometry on transmission efficiency and quality factor are inspected. The proposed filter exhibits high quality resonance at central wavelength. The calculated transmission efficiency and quality factor are 94% and 449, respectively. We envision that the proposed structure with optimal properties can provide better performance for future sustainable filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  • Abdul Latiff, A., Rahim, A., Rafis, H., Jaafar, A., Gannapathy, V.R., Zainuddin, M.N.S.: Design high-Q square resonator add-drop filter for CWDM application. Aust. J. Basic Appl. Sci. 7(10), 364–367 (2013)

    Google Scholar 

  • Akbari, L., Abedi, K.: A highly sensitive and tunable plasmonic sensor based on a graphene tubular resonator. Opt. Commun. 458, 124686 (2020)

    Article  Google Scholar 

  • Azizi, B., Shabankareh, M.A.G., Farmani, A.: Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer. J. Comput. Electron. 11, 1–12 (2021)

  • Azmand, H.R., Enemuo, A.N., Seo, S.W.: Active liquid flow control through a polypyrrole-coated macroporous silicon membrane toward chemical stimulation applications. Sens. Actuat. A 318, 112512 (2021)

    Article  Google Scholar 

  • Barough, A.S., Noori, M., Abbasiyan, A.: Self-collimation and slow light-based refractive index sensor with a large detection range. Annalen der Physik 533(7), 2100052–2100059 (2021)

  • Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Optical modes in 2-D imperfect square and triangular microcavities. IEEE J. Quantum Electron. 41(6), 857–862 (2005)

    Article  ADS  Google Scholar 

  • Cheng, F., Yang, X., Gao, J.: Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt. Lett. 39(11), 3185–3188 (2014)

    Article  ADS  Google Scholar 

  • Chin, M., Ho, S.: Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightw. Technol. 16(8), 1433–1441 (1998)

    Article  ADS  Google Scholar 

  • Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106(3), 031107–031115 (2015)

    Article  ADS  Google Scholar 

  • Davoodi, F., Granpayeh, N.: Nonlinear graphene-transition metal dichalcogenides heterostructure refractive index sensor. IEEE Sens. J. 19(12), 4435–4442 (2019)

    Article  ADS  Google Scholar 

  • Farhadi, S., Farmani, A., Hamidi, A.: Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect. Opt. Quant. Electron. 53(9), 1–13 (2021)

    Article  Google Scholar 

  • Farmani, H., Farmani, A., Nguyen, T.A.: Graphene-based field effect transistor (GFET) as nanobiosensors. In: Silicon-Based Hybrid Nanoparticles, pp. 269–275. Elsevier (2022)

  • Farmani, H., Farmani, A.: Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E Low Dimens. Syst. Nanostruct. 124, 114375–114382 (2020)

    Article  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E Low-dimension. Syst. Nanostruct. 116, 113730–113738 (2020)

    Article  Google Scholar 

  • Feng, J., Akimoto, R., Hao, Q., Zeng, H.: Three-dimensional cross-coupled silicon nitride racetrack resonator-based tunable optical filter. IEEE Photon. Technol. Lett. 29(9), 771–774 (2017)

    Article  ADS  Google Scholar 

  • Ghahrizjani, R.T., Ghafarkani, M., Janghorban, S., Ameri, M., Azadinia, M., Mohajerani, E., Qaryan, M., Eslami, P., Fouladinasab, H.: ZnO-SrAl2O4: Eu nanocomposite-based optical sensors for luminescence thermometry. ACS Appl. Nano Mater. 4(9), 9190–9199 (2021)

    Article  Google Scholar 

  • Ghodrati, M., Mir, A., Farmani, A.: Non-destructive label-free biomaterials detection using tunneling carbon nanotube-based biosensor. IEEE Sens. J. 21(7), 8847–8854 (2021)

    Article  ADS  Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun. 502, 127421–127430 (2022)

    Article  Google Scholar 

  • Hosseini, E., Mir, A., Farmani, A.: Black phosphorous-based nanostructures for refractive index sensing with high figure of merit in the mid-infrared. Plasmonics 11, 1–8 (2021)

  • Imanian, H., Noori, M., Abbasiyan, A.: Highly efficient gas sensor based on quasi-periodic phononic crystals. Sens. Actuat. B Chem. 345, 130418–130424 (2021)

    Article  Google Scholar 

  • Jafari, D., Danaie, M., Orouji, A.A.: Ultra-fast Two-bit all-optical analog to digital convertor based on surface plasmons and Kerr-type nonlinear cavity. Plasmonics 11, 1–8 (2021)

  • Jin, Y., Baugh, N., Lin, Y., Ge, M., Dickey, M.D.: Soft, stretchable, and pneumatically-triggered thermochromic optical filter with embedded phosphorescence. ACS Appl. Mater. Interfaces 12, 26424–26431 (2020)

    Article  Google Scholar 

  • Kargar, A., Lee, C.: Analysis of racetrack resonators in surface sensing applications. In: PhotonicsGlobal@ Singapore, 2008. IPGC 2008, pp. 1–4. IEEE (2008)

  • Khosravian, E., Mashayekhi, H.R., Farmani, A.: Highly polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths. JOSA B 38(4), 1192–1199 (2021)

    Article  ADS  Google Scholar 

  • Li, Y., An, B., Jiang, S., Gao, J., Chen, Y., Pan, S.: Plasmonic induced triple-band absorber for sensor application. Opt. Express 23(13), 17607–17612 (2015)

    Article  ADS  Google Scholar 

  • Mandal, P.: Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11(1), 223–229 (2016)

    Article  Google Scholar 

  • Mendez-Astudillo, M., Okayama, H., Nakajima, H.: Silicon optical filter with transmission peaks in wide stopband obtained by anti-symmetric photonic crystal with defect in multimode waveguides. Opt. Express 26(2), 1841–1850 (2018)

    Article  ADS  Google Scholar 

  • Nasirifar, R., Danaie, M., Dideban, A.: Highly sensitive surface plasmon resonance sensor using perforated optical fiber for biomedical applications. Optik 250, 168051–168059 (2022)

  • Nickpay, M.R., Danaie, M., Shahzadi, A.: Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 11, 1–12 (2021)

  • Panindre, P., Kumar, S.: Effect of rounding corners on optical resonances in single-mode sharp-cornered microresonators. Opt. Lett. 41(5), 878–881 (2016)

    Article  ADS  Google Scholar 

  • Sarbishe, F.K., Selleri, S., Hamzeh, G., Razaghi, M.: A highly sensitive ring resonator sensor based on subwavelength grating waveguides for biosensing applications. In: Optical Methods for Inspection, Characterization, and Imaging of Biomaterials V, vol. 11786, p. 117861L. International Society for Optics and Photonics (2021)

  • Seo, S.W., Azmand, H.R., Song, Y.: A fiber optic sensor platform for smart hydrogel event detection. Opt. Fiber Technol. 58, 102246–102253 (2020)

    Article  Google Scholar 

  • Soltani, M., Yegnanarayanan, S., Li, Q., Adibi, A.: Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment. IEEE J. Quantum Electron. 46(8), 1158–1169 (2010)

    Article  ADS  Google Scholar 

  • Tavousi, A., Mansouri-Birjandi, M.A., Janfaza, M.: Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis. Plasmonics 14(5), 1207–1217 (2019)

    Article  Google Scholar 

  • Teymouri, S., Ahmadi, H., Rostami, A., Matloub, S.: Phononic crystal locally-resonant cavity for sensing metallic oxides nano-powders. Int. J. Mech. Sci. 207, 106658–106665 (2021)

    Article  Google Scholar 

  • Wu, T., Liu, Y., Yu, Z., Peng, Y., Shu, C., Ye, H.: The sensing characteristics of plasmonic waveguide with a ring resonator. Opt. Express 22(7), 7669–7677 (2014)

    Article  ADS  Google Scholar 

  • Wu, K., Feng, Y., Li, J., Yu, G., Liu, L., Xiong, Y., Li, F.: Demonstration of a mid-infrared NO molecular Faraday optical filter. Opt. Express 25(25), 30916–30930 (2017)

    Article  ADS  Google Scholar 

  • Xiao, S., Wang, T., Liu, Y., Xu, C., Han, X., Yan, X.: Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016)

    Article  Google Scholar 

  • Yari, P., Farmani, H., Farmani, A.: Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits. Plasmonics 11, 1–10 (2021)

Download references

Acknowledgements

The Authors would like to thank the reviewers for their thoughtful comments.

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Equal contributions of all authors.

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing flnancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, R., Soubache, I.D. & Farmani, A. Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method. Opt Quant Electron 54, 75 (2022). https://doi.org/10.1007/s11082-021-03449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03449-y

Keywords

Navigation