Skip to main content
Log in

A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the past few decades, the academic research and industrial synergy is dramatically accelerating to conceptualize high data rate services. The congestion in the radio frequency (RF) spectrum has imposed many inherent limitations in the growth of future wireless networks. These limitations have spurred global research activities to open new parts of the electromagnetic wave spectrum. More researches and developments in new modulation schemes, channel modelling and signal processing techniques are yet to be explored. Optical wireless communication (OWC) has appeared as an emerging complementary technology to RF systems. It is deemed as a promising alternative to address RF spectrum congestion and enhance system’s capacity. OWC has gained widespread attention due to its high confidentiality, large spectrum resources and strong resistance to electromagnetic interference (EMI). In this paper, we envisage OWC systems as a promising solution for the bandwidth shortage of RF spectrum. We have also discussed the current upsurge of diversified OWCs in fifth generation (5G) and Internet-of-Things (IoT) solutions which has spurred heated discussion for future technologies. In this study, we have outlined a holistic vision of several OWC enabling technologies and survey of potential issues in OWC systems. We investigate visible light communication (VLC) and free space optics (FSO) as potential implementation approaches for OWC systems. Generally, the intent of this extant study includes (i) potential features and classifications of OWC systems, (ii) key enabling technologies, (iii) link design requirements and modulation schemes, (iv) main impairments and solutions to reduce the impairments, and (v) security issues and techniques to secure OWC. At last, open research challenges and future research directions in OWC systems are investigated. In this regard, we believe this survey will be helpful to aggregate the research efforts and eliminate the technical uncertainties towards breakthrough novelties of OWC technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • “6Genesis vision for 2023 [Online]. Available: https://www.youtube.com/watch?v=T6ubRoZCeVw&t=132s.”

  • Abtahi, M., Lemieux, P., Mathlouthi, W., Rusch, L.A.: Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. J. Light. Technol. 24(12), 4966–4973 (2006)

    ADS  Google Scholar 

  • Abumarshoud, H., Chen, C., Islim, M.S., Haas, H.: Optical wireless communications for cyber-secure ubiquitous wireless networks. Proc. R. Soc. A 476(2242), 20200162 (2020)

    ADS  Google Scholar 

  • Achour, M.: Simulating atmospheric free-space optical propagation: II. Haze, fog, and low clouds attenuations. Opt. Wirel. Commun. V 4873, 1–12 (2002)

    ADS  Google Scholar 

  • Agrell, E., et al.: Roadmap of optical communications. J. Opt. United Kingdom (2016). https://doi.org/10.1088/2040-8978/18/6/063002

    Article  Google Scholar 

  • Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

    Google Scholar 

  • Al-Gailani, S.A., et al.: A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 9, 7353–7373 (2020)

    Google Scholar 

  • Al-Ghamdi, A.G., Elmirghani, J.M.H.: Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes. IEEE Trans. Commun. 52(10), 1622–1631 (2004)

    Google Scholar 

  • Al-Kinani, A., Wang, C.-X., Zhou, L., Zhang, W.: Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutorials 20(3), 1939–1962 (2018)

    Google Scholar 

  • Alresheedi, M.T., Elmirghani, J.M.H.: 10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection. J. Light. Technol. 30(12), 1843–1856 (2012)

    ADS  Google Scholar 

  • Alresheedi, M.T., Hussein, A.T., Elmirghani, J.M.H.: Uplink design in VLC systems with IR sources and beam steering. IET Commun. 11(3), 311–317 (2017)

    Google Scholar 

  • Alsaadi, F.E., Elmirghani, J.M.H.: Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection. IEEE J. Sel. Areas Commun. 27(8), 1507–1519 (2009a)

    Google Scholar 

  • Alsaadi, F.E., Elmirghani, J.M.H.: Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment. IEEE J. Sel. Areas Commun. 27(9), 1663–1675 (2009b)

    Google Scholar 

  • Alsaadi, F.E., Elmirghani, J.M.H.: High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers. J. Light. Technol. 28(16), 2191–2206 (2010)

    ADS  Google Scholar 

  • Alsulami, O.Z., et al.: Optimum resource allocation in optical wireless systems with energy-efficient fog and cloud architectures. Philos. Trans. R. Soc. A 378(2169), 20190188 (2020a)

    ADS  Google Scholar 

  • Alsulami, O., Hussein, A.T., Alresheedi, M.T., Elmirghani, J.M.H.: Optical wireless communication systems, a survey, https://arxiv.org/abs/1812.11544, (2018)

  • Alsulami, O.Z., Alresheedi, M.T., Elmirghani, J.M.H.: Transmitter diversity with beam steering. In: 2019 21st International Conference on Transparent Optical Networks (ICTON), 2019, pp. 1–5

  • Alsulami, O.Z., El-Gorashi, T.E.H., Elmirghani, J.M.H.: Resource allocation in 6G optical wireless systems,” https://arxiv.org/abs/2008.02188, (2020)

  • Alsulami, O.Z., Saeed, S.O.M., Mohamed, S.H., El-Gorashi, T.E.H., Alresheedi, M.T., Elmirghani, J.M.H.: Shared optical wireless cells for in-cabin aircraft links,” https://arxiv.org/abs/2002.09430, (2020)

  • Arfaoui, M.A., et al.: Physical layer security for visible light communication systems: a survey. IEEE Commun. Surv. Tutorials 22(3), 1887–1908 (2020)

    Google Scholar 

  • Arnon, S.: Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt. Lett. 28(2), 129–131 (2003)

    ADS  Google Scholar 

  • Arnon, S.: Performance of a laser μsatellite network with an optical preamplifier. JOSA A 22(4), 708–715 (2005)

    ADS  Google Scholar 

  • Arnon, S.: Quantum technology for optical wireless communication in data-center security and hacking. Broadband Access Commun. Technol. 10945, 109450H (2019)

    Google Scholar 

  • Arya, S., Chung, Y.H.: Non-line-of-sight ultraviolet communication with receiver diversity in atmospheric turbulence. IEEE Photonics Technol. Lett. 30(10), 895–898 (2018)

    ADS  Google Scholar 

  • Arya, S., Chung, Y.H.: Novel indoor ultraviolet wireless communication: design implementation, channel modeling, and challenges. IEEE Syst. J. 15(2), 2349–2360 (2020a)

    ADS  Google Scholar 

  • Arya, S., Chung, Y.H.: A unified statistical model for Málaga distributed optical scattering communications. Opt. Commun. 463, 125402 (2020b)

    Google Scholar 

  • Ayyash, M., et al.: Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges. IEEE Commun. Mag. 54(2), 64–71 (2016)

    Google Scholar 

  • Baister, G., Kudielka, K., Dreischer, T., Tüchler, M.: Results from the DOLCE (deep space optical link communications experiment) Project. Free-Space Laser Commun. Technol. XXI 7199, 71990B (2009)

    Google Scholar 

  • Barroso, A.R.F., Johnson, J.: Optical wireless communications omnidirectional receivers for vehicular communications. AEU Int. J. Electron. Commun. 79, 102–109 (2017)

    Google Scholar 

  • Berenguer, P.W., et al.: Optical wireless MIMO experiments in an industrial environment. IEEE J. Sel. Areas Commun. 36(1), 185–193 (2017)

    Google Scholar 

  • Biswas, A., Boroson, D., Edwards, B.: Mars laser communication demonstration: what it would have been. Free-Space Laser Commun. Technol. XVIII 6105, 610502 (2006)

    Google Scholar 

  • Bitragunta, S., Nitundil, S.: Best beam selection and PHY switching policy for hybrid FSO/RF inter-satellite communication link. IET Commun. 14(19), 3350–3362 (2020)

    Google Scholar 

  • Boluda-Ruiz, R., Rico-Pinazo, P., Castillo-Vázquez, B., García-Zambrana, A., Qaraqe, K.: Impulse response modeling of underwater optical scattering channels for wireless communication. IEEE Photonics J. 12(4), 1–14 (2020)

    Google Scholar 

  • Borah, D.K., Voelz, D., Basu, S.: Maximum-likelihood estimation of a laser system pointing parameters by use of return photon counts. Appl. Opt. 45(11), 2504–2509 (2006)

    ADS  Google Scholar 

  • Borah, D.K., Boucouvalas, A.C., Davis, C.C., Hranilovic, S., Yiannopoulos, K.: A review of communication-oriented optical wireless systems. EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012)

    Google Scholar 

  • Boubezari, R., Le Minh, H., Ghassemlooy, Z., Bouridane, A.: Smartphone camera based visible light communication. J. Light. Technol. 34(17), 4121–4127 (2016)

    ADS  Google Scholar 

  • Brady, K., et al. “Vehicle-to-vehicle communication,” U.S. Pat. No. 10,700,782

  • Brundage, H.: Designing a wireless underwater optical communication system, Doctoral dissertation, Massachusetts Institute of Technology (2010)

  • Bykhovsky, D.: Coherence time evaluation in indoor optical wireless communication channels. Sensors 20(18), 5067 (2020)

    ADS  Google Scholar 

  • Cahyadi, W.A., Chung, Y.H., Ghassemlooy, Z., Hassan, N.B.: Optical camera communications: principles, modulations, potential and challenges. Electronics 9(9), 1339 (2020)

    Google Scholar 

  • Căilean, A.-M., Dimian, M.: Current challenges for visible light communications usage in vehicle applications: A survey. IEEE Commun. Surv. Tutorials 19(4), 2681–2703 (2017)

    Google Scholar 

  • Carruther, J.B., Kahn, J.M.: Angle diversity for nondirected wireless infrared communication. IEEE Trans. Commun. 48(6), 960–969 (2000)

    Google Scholar 

  • Cazaubiel, V., et al.: LOLA: A 40000 km optical link between an aircraft and a geostationary satellite. In: ESA Special Publication, 621 (2006)

  • Chang, S., Gong, C., Huang, N., Xu, Z.: Indoor Visible Light Communication Scheduling for IOT Scenarios with Short Blocklength, in 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), (2020), pp. 185–190

  • Chaudhry, A.U., Yanikomeroglu, H.: Free space optics for next-generation satellite networks. IEEE Consumer Electronics Magazine (2020)

  • Chellam, J., Jeyachitra, R.K.: Energy-efficient bi-directional visible light communication using thin-film corner cube retroreflector for self-sustainable IoT. IET Optoelectron 14(5), 223–233 (2020)

  • Chen, B., Yu, H.: Visual tracking for mobile optical wireless communications. Opt. Express 28(21), 31119–31126 (2020)

    ADS  Google Scholar 

  • Chen, X., et al.: Diversity-reception UWOC system using solar panel array and maximum ratio combining. Opt. Express 27(23), 34284–34297 (2019)

    ADS  Google Scholar 

  • Chevalier, L., Sahuguede, S., Julien-Vergonjanne, A.: Optical wireless links as an alternative to radio-frequency for medical body area networks. IEEE J. Sel. Areas Commun. 33(9), 2002–2010 (2015)

    Google Scholar 

  • Chiaraviglio, L., et al.: Bringing 5G into rural and low-income areas: Is it feasible? IEEE Commun. Stand. Mag. 1(3), 50–57 (2017)

    Google Scholar 

  • Cho, S., Chen, G., Coon, J.P.: Securing visible light communication systems by beamforming in the presence of randomly distributed eavesdroppers. IEEE Trans. Wirel. Commun. 17(5), 2918–2931 (2018)

    Google Scholar 

  • Cho, S., Chen, G., Coon, J.P.: Securing visible light communications with spatial jamming. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai ,China., (2019), pp. 1–6

  • Chowdhury, M.Z., Hossan, M.T., Islam, A., Jang, Y.M.: A comparative survey of optical wireless technologies: Architectures and applications. IEEE Access 6, 9819–9840 (2018)

    Google Scholar 

  • Chowdhury, M.Z., Shahjalal, M., Hasan, M., Jang, Y.M.: The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl. Sci. 9(20), 4367 (2019)

    Google Scholar 

  • Chowdhury, M.Z., Hasan, M.K., Shahjalal, M., Hossan, M.T., Jang, Y.M.: Optical wireless hybrid networks: trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutorials 22(2), 930–966 (2020)

    Google Scholar 

  • Chun, H., Gomez, A., Quintana, C., Zhang, W., Faulkner, G., O’Brien, D.: A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  • Cisco: Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017–2022 white paper,” Ca, Usa, pp. 3–5, 2019, [Online]. Available: http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf

  • Cisco U.: Cisco annual internet report (2018–2023) white paper,” [Online](accessed March 26, 2021) https//:http://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11–741490.html

  • Cochenour, B., Dunn, K., Laux, A., Mullen, L.: Experimental measurements of the magnitude and phase response of high-frequency modulated light underwater. Appl. Opt. 56(14), 4019–4024 (2017)

    ADS  Google Scholar 

  • Cortese, A.J., et al.: Microscopic sensors using optical wireless integrated circuits. Proc. Natl. Acad. Sci. 117(17), 9173–9179 (2020)

    Google Scholar 

  • Cunha, T.B., Fan, W.X., Deng, X., Linnartz, J.P.: A space-frequency power allocation algorithm for MIMO OWC systems over low-pass channels. In: 2020 Optical Wireless Communication Conference, (2020), pp. 1–2

  • Dasgupta, A., Mennemanteuil, M.-M., Buret, M., Cazier, N., Colas-des-Francs, G., Bouhelier, A.: Optical wireless link between a nanoscale antenna and a transducing rectenna. Nat. Commun. 9(1), 1–7 (2018)

    Google Scholar 

  • Deng, L., Fan, Y.: Analysis of channel correlation and channel capacity for indoor MIMO visible light communication systems. Appl. Opt. 59(15), 4672–4684 (2020)

    ADS  Google Scholar 

  • Ding, J., Liu, W., Zhang, H., Mei, H.: Advanced progress of optical wireless technologies for power industry: an overview. Appl. Sci. 10(18), 6463 (2020)

    Google Scholar 

  • Djordjevic, I.B.: Advanced Optical and Wireless Communications Systems. Springer, Berlin (2018)

    Google Scholar 

  • Dreischer, T., et al.: Integrated RF-optical TT & C for a deep space mission. Acta Astronaut. 65(11), 1772–1782 (2009)

    ADS  Google Scholar 

  • Elayan, H., Amin, O., Shihada, B., Shubair, R.M., Alouini, M.-S.: Terahertz band: the last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 1, 1–32 (2019)

    Google Scholar 

  • Elbawab, M., Abaza, M., Aly, M.H.: Blind detection for serial relays in free space optical communication systems. Appl. Sci. 8(11), 2074 (2018)

    Google Scholar 

  • Elgala, H., Mesleh, R., Haas, H.: A study of LED nonlinearity effects on optical wireless transmission using OFDM. In: 2009 IFIP International Conference on Wireless and Optical Communications Networks, 2009, pp. 1–5

  • Elgala, H., Mesleh, R., Haas, H.: Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs. Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009b)

    Google Scholar 

  • Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011)

    Google Scholar 

  • Fadhil, H.A., et al.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Optik (stuttg) 124(19), 3969–3973 (2013)

    ADS  Google Scholar 

  • Feng, W., Lee, F.C., Mattavelli, P.: Optimal trajectory control of LLC resonant converters for LED PWM dimming. IEEE Trans. Power Electron. 29(2), 979–987 (2013)

    ADS  Google Scholar 

  • Feng, S., Bai, T., Hanzo, L.: Joint power allocation for the multi-user NOMA-downlink in a power-line-fed VLC network. IEEE Trans. Veh. Technol. 68(5), 5185–5190 (2019)

    Google Scholar 

  • Fujimoto, N., Mochizuki, H.: 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit. In: National Fiber Optic Engineers Conference, 2013, pp. JTh2A-73

  • Fujiwara, Y., et al.: Optical inter-orbit communications engineering test satellite (OICETS). Acta Astronaut. 61(1–6), 163–175 (2007)

    ADS  Google Scholar 

  • “GA-ASI and TESAT Partner to Develop RPA-to-spacecraft Lasercom Link, Gen. Atomics Aeronaut. Syst. Inc., Poway, CA, USA, 2012. [Online]. Available: http://www.ga-asi.com/ga-asi-and-tesat-partner-todevelop-rpa-to-spacecraft-lasercom-link

  • Gawłowicz, P., Jarchlo, E.A., Zubow, A.: Bringing MIMO to VLC using COTS WiFi. In: 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1–6

  • Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., Cheng, J.: Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 33(9), 1738–1749 (2015)

    Google Scholar 

  • Ghassemlooy, Z., et al.: An overview of optical wireless communications. In: Optical Wireless Communications, Springer, (2016), pp. 1–23

  • Ghassemlooy, Z., Alves, L.N., Zvanovec, S., Khalighi, M.-A.: Visible Light Communications: Theory and Applications. CRC Press, Boca Raton (2017)

    Google Scholar 

  • Gkoura, L.K., et al.: Underwater optical wireless communication systems: A concise review. In: Turbulence Modelling Approaches—Current State, Development Prospects, Applications, InTech (2017)

  • Gong, C., Xu, Z.: Non-line of sight optical wireless relaying with the photon counting receiver: a count-and-forward protocol. IEEE Trans. Wirel. Commun. 14(1), 376–388 (2014)

    Google Scholar 

  • Goswami, P., Yan, Z., Mukherjee, A., Yang, L., Routray, S., Palai, G.: An energy efficient clustering using firefly and HML for optical wireless sensor network. Optik (stuttg) 182, 181–185 (2019)

    ADS  Google Scholar 

  • Grabner, M., Kvicera, V.: The wavelength dependent model of extinction in fog and haze for free space optical communication. Opt. Express 19(4), 3379–3386 (2011)

    ADS  Google Scholar 

  • Grubor, J., Lee, S.C.J., Langer, K.-D., Koonen, T., Walewski, J.W.: Wireless high-speed data transmission with phosphorescent white-light LEDs. In 33rd European Conference and Exhibition of Optical Communication-Post-Deadline Papers (published 2008), 2007, pp. 1–2

  • Guan, H., Li, J., Cao, S., Yu, Y.: Use of mobile LiDAR in road information inventory: a review. Int. J. Image Data Fusion 7(3), 219–242 (2016)

    ADS  Google Scholar 

  • Haas, H.: Wireless data from every light bulb, TED website, p. 49, (2011)

  • Haas, H.: LiFi is a paradigm-shifting 5G technology. Rev. Phys. 3, 26–31 (2018)

    Google Scholar 

  • Haas, H., Yin, L., Wang, Y., Chen, C.: What is lifi? J. Light. Technol. 34(6), 1533–1544 (2015)

    Google Scholar 

  • Haas, H., et al.: Introduction to indoor networking concepts and challenges in LiFi. J. Opt. Commun. Netw. 12(2), A190–A203 (2020)

    Google Scholar 

  • Haddad, O., Khalighi, M.-A., Zvanovec, S., Adel, M.: Channel characterization and modeling for optical wireless body-area networks. IEEE Open J. Commun. Soc. 1, 760–776 (2020a)

    Google Scholar 

  • Haddad, O., Khalighi, M.-A., Zvanovec, S.: Channel characterization for optical extra-WBAN links considering local and global user mobility. Broadband Access Commun. Technol. XIV 11307, 113070G (2020)

    Google Scholar 

  • Haigh, P.A., Son, T.T., Bentley, E., Ghassemlooy, Z., Le Minh, H., Chao, L.: Development of a visible light communications system for optical wireless local area networks. In 2012 Computing, Communications and Applications Conference, (2012), pp. 351–355

  • Hamza A., Tripp, T.: Optical Wireless Communication for the Internet of Things: Advances, Challenges, and Opportunities. (2020)

  • Hamza, A.S., Deogun, J.S., Alexander, D.R.: Classification framework for free space optical communication links and systems. IEEE Commun. Surv. Tutorials 21(2), 1346–1382 (2018)

    Google Scholar 

  • Han, S., Noh, Y., Lee, U., Gerla, M.: Optical-acoustic hybrid network toward real-time video streaming for mobile underwater sensors. Ad Hoc Netw. 83, 1–7 (2019)

    Google Scholar 

  • Hanzo, L., Haas, H., Imre, S., O’Brien, D., Rupp, M., Gyongyosi, L.: Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100, 1853–1888 (2012)

    Google Scholar 

  • Hasan, M., Chowdhury, M.Z., Shahjalal, M., Jang, Y.M.: Fuzzy based network assignment and link-switching analysis in hybrid OCC/LiFi system, Wirel. Commun. Mob. Comput., vol. 2018, (2018)

  • Hayle, S.T., et al.: Integration of fiber and FSO network with fault-protection for optical access network. Opt. Commun. 484, 126676 (2021). https://doi.org/10.1016/j.optcom.2020.126676

    Article  Google Scholar 

  • He, J., Tang, K., Shi, J.: Effective vehicle-to-vehicle positioning method using monocular camera based on VLC. Opt. Express 28(4), 4433–4443 (2020)

    ADS  Google Scholar 

  • Hitam, S., Suhaimi, S.N., Noor, A.S.M., Anas, S.B.A., Sahbudin, R.K.Z.: Performance analysis on 16-channels wavelength division multiplexing in free space optical transmission under tropical regions environment. J. Comput. Sci. 8(1), 145–148 (2012)

    Google Scholar 

  • Hossen, D., Alim, G.S.: Performane Evaluation of the Free Space Optical (FSO) Communication with the Effects of the Atmospheric Turbulances. BRAC University, BRAC University (2008)

    Google Scholar 

  • Hu, Y., et al.: Elevation information in tail (EIT) technique for lidar altimetry. Opt. Express 15(22), 14504–14515 (2007)

    ADS  Google Scholar 

  • Hu, P., Pathak, P.H., Das, A.K., Yang, Z., Mohapatra, P.: PLiFi: hybrid WiFi-VLC networking using power lines. In Proceedings of the 3rd Workshop on Visible Light Communication Systems, 2016, pp. 31–36

  • Hussein, A.T., Elmirghani, J.M.H.: 10 Gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes. J. Opt. Commun. Netw. 7(8), 718–735 (2015)

    Google Scholar 

  • Hussein, A.T., Alresheedi, M.T., Elmirghani, J.M.H.: 25 Gbps mobile visible light communication system employing fast adaptation techniques. In: 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–7

  • “IEEE, ‘IEEE 802.15 WPANTM Task Group 13 (TG13) Multi- Gigabit/s Optical Wireless Communications,’ 2018. Available: http://www.ieee802.org/15/pub/TG13.html

  • Islam, A., Musavian, L., Thomos, N.: Ultra-reliable and low-latency vehicular communication using optical camera communications. arXiv preprint https://arxiv.org/abs/1911.09034 (2019)

  • Jaber, M., Imran, M.A., Tafazolli, R., Tukmanov, A.: 5G backhaul challenges and emerging research directions: A survey. IEEE Access 4, 1743–1766 (2016)

    Google Scholar 

  • James Singh, K., et al.: Micro-LED as a promising candidate for high-speed visible light communication. Appl. Sci. 10(20), 7384 (2020)

    Google Scholar 

  • Jia, K., Zhang, S.: Influence of multiuser interference on performances of direct-current-biased optical orthogonal frequency division multiplexing code division multiple access system for visible light communication. Laser Optoelectron. Prog 56(11), 110604 (2019)

    Google Scholar 

  • Jiang, Z., et al.: Symbol-splitting-based simultaneous wireless information and power transfer system for WPAN applications. IEEE Microw. Wirel. Components Lett. 30(7), 713–716 (2020)

  • Jivkova, S., Kavehrad, M.: Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications. IEEE Trans. Commun. 49(12), 2145–2153 (2001)

    Google Scholar 

  • Kaadan, A., Refai, H.H., LoPresti, P.G.: Multielement FSO transceivers alignment for inter-UAV communications. J. Light. Technol. 32(24), 4785–4795 (2014)

    Google Scholar 

  • Kang, W., Hranilovic, S.: Power reduction techniques for multiple-subcarrier modulated diffuse wireless optical channels. IEEE Trans. Commun. 56(2), 279–288 (2008)

    Google Scholar 

  • Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutorials 17(3), 1649–1678 (2015)

    Google Scholar 

  • Kashef, M., Abdallah, M., Al-Dhahir, N.: Transmit power optimization for a hybrid PLC/VLC/RF communication system. IEEE Trans. Green Commun. Netw. 2(1), 234–245 (2017)

    Google Scholar 

  • Katz, M., O’Brien, D.: Exploiting novel concepts for visible light communications: from light-based IoT to living surfaces. Optik (Stuttg). 195, 163176 (2019)

    ADS  Google Scholar 

  • Kaur, P., Jain, V.K., Kar, S.: Effect of atmospheric conditions and aperture averaging on capacity of free space optical links. Opt. Quantum Electron. 46(9), 1139–1148 (2014)

    Google Scholar 

  • Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016a)

    Google Scholar 

  • Kaushal, H., Kaddoum, G.: Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 19(1), 57–96 (2016b)

    Google Scholar 

  • Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., Zhang, T.: A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Commun. Surv. Tutorials 20(2), 1104–1123 (2018)

    Google Scholar 

  • Ke, W., et al.: Short-Range Optical Wireless Communications for Indoor and Interconnects Applications. ZTE Commun. 14(2), 13–22 (2019)

    Google Scholar 

  • Kerr, A., Rafuse, H., Sparkes, G., Hinchey, J., Sandeman, H.: Visible/infrared spectroscopy (VIRS) as a research tool in economic geology: background and pilot studies from Newfoundland and Labrador. Geol. Surv. Rep. 11, 145–166 (2011)

    Google Scholar 

  • Khalighi, M.A., Aitamer, N., Schwartz, N., Bourennane, S.: Turbulence mitigation by aperture averaging in wireless optical systems. In: 2009 10th International Conference on Telecommunications, (2009), pp. 59–66

  • Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014)

    Google Scholar 

  • Khan, L.U.: Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Networks 3(2), 78–88 (2017)

    Google Scholar 

  • Khan, M.N., et al.: Maximizing throughput of hybrid FSO-RF communication system: an algorithm. IEEE Access 6, 30039–30048 (2018)

    Google Scholar 

  • Kojima, K., et al.: Self-organized micro-light-emitting diode structure for high-speed solar-blind optical wireless communications. Appl. Phys. Lett. 117(3), 31103 (2020)

    Google Scholar 

  • Komine, T., Haruyama, S., Nakagawa, M.: Bidirectional visible-light communication using corner cube modulator. IEIC Tech. Rep. 102, 41–46 (2003)

    Google Scholar 

  • Komine, T., Lee, J.H., Haruyama, S., Nakagawa, M.: Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment. IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009)

    Google Scholar 

  • Kong, M., et al.: Security weaknesses of underwater wireless optical communication. Opt. Express 25(18), 21509–21518 (2017)

    ADS  Google Scholar 

  • Koonen, T., Mekonnen, K.A., Huijskens, F., Pham, N.-Q., Cao, Z., Tangdiongga, E.: Fully passive user localization for beam-steered high-capacity optical wireless communication system. J. Light. Technol. 38(10), 2842–2848 (2020)

    ADS  Google Scholar 

  • Kottke, C., Hilt, J., Habel, K., Vučić, J., Langer, K.-D.:1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary. In: European Conference and Exhibition on Optical Communication, 2012, p. We-3

  • Kumar, A., Janyani, V., Batagelj, B., Abidin, N.H.Z., Bakar, M.H.A.: Hybrid FSO / fiber optic link based reliable & energy efficient WDM optical network architecture. Opt. Fiber Technol. 61, 102422 (2021). https://doi.org/10.1016/j.yofte.2020.102422

    Article  Google Scholar 

  • Langer, K.-D., et al.: Exploring the potentials of optical-wireless communication using white LEDs. In: 2011 13th International Conference on Transparent Optical Networks, 2011, pp. 1–5

  • Le Minh, H., et al.: High-speed visible light communications using multiple-resonant equalization. IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008)

    ADS  Google Scholar 

  • Le, N.T., Hossain, M.A., Jang, Y.M.: A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 53, 95–109 (2017)

    Google Scholar 

  • Leccese, F., Leccisi, M., Cagnetti, M.: Cluster layout for an optical wireless sensor network for aerospace applications. In: 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2019, pp. 556–561

  • Lee, K., Park, H.: Modulations for visible light communications with dimming control. IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011)

    ADS  Google Scholar 

  • Lee, I.E., Ghassemlooy, Z., Ng, W.P., Khalighi, M.-A.: Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors. Opt. Lett. 38(3), 350–352 (2013)

    ADS  Google Scholar 

  • Li, H., Chen, X., Guo, J., Chen, H.: A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Opt. Express 22(22), 27203–27213 (2014)

    ADS  Google Scholar 

  • Li, S., Da Xu, L., Zhao, S.: 5G Internet of Things: a survey. J. Ind. Inf. Integr. 10, 1–9 (2018a)

    Google Scholar 

  • Li, Y., Ghassemlooy, Z., Tang, X., Lin, B., Zhang, Y.: A VLC smartphone camera based indoor positioning system. IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018b)

    ADS  Google Scholar 

  • Li, L., Ito, S., Yotsumoto, Y.: Effect of change saliency and neural entrainment on flicker-induced time dilation. J. vis. 20(6), 15 (2020)

    Google Scholar 

  • Lin, A., Tong, Z., Song, Y., Kong, M., Xu, J.: Underwater wireless optical communication system using blue LEDs. J. Phys. Conf. Ser 679, 12032 (2016)

    Google Scholar 

  • Lin, A., et al.: Underwater wireless optical communication using a directly modulated semiconductor laser. In: OCEANS 2015-Genova, 2015, pp. 1–4

  • Liu, B., Gong, C., Xu, Z.: Correlation analysis and path loss prediction for optical wireless scattering communication over broad spectra. In: 2018 IEEE International Conference on Communications (ICC), (2018) pp. 1–6

  • Liu, X., Yang, L., Chen, Q., Guo, J., Wu, S., Chen, X.: An analytic method of wavelength requirements in dynamic optical satellite networks. IEEE Commun. Lett. 24(11), 2569–2573 (2020)

    Google Scholar 

  • Luo, J., Fan, L., Li, H.: Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutorials 19(4), 2871–2893 (2017)

    Google Scholar 

  • Ma, S., Dong, Z.-L., Li, H., Lu, Z., Li, S.: Optimal and robust secure beamformer for indoor MISO visible light communication. J. Light. Technol. 34(21), 4988–4998 (2016)

    ADS  Google Scholar 

  • Majumdar, A.K., Ricklin, J.C.: Free-Space Laser Communications: Principles and Advances, vol. 2. Springer Science & Business Media, Berlin (2010)

    Google Scholar 

  • Mei, H., Ding, J., Zheng, J., Chen, X., Liu, W.: Overview of vehicle optical wireless communications. IEEE Access 8, 173461–173480 (2020)

    Google Scholar 

  • Mekonnen, K.A., Tangdiongga, E., Koonen, A.M.J.: High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques. J. Light. Technol. 36(19), 4460–4467 (2018)

    ADS  Google Scholar 

  • Memedi, A., Dressler, F.: Vehicular visible light communications: a survey. IEEE Commun. Surv. Tutorials 23(1), 161–181 (2020)

    Google Scholar 

  • Le Minh, H., et al.: 80 Mbit/s visible light communications using pre-equalized white LED. In: 2008 34th European Conference on Optical Communication, (2008), pp. 1–2

  • Minotto, A., et al.: Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci. Appl. 9(1), 1–11 (2020)

    Google Scholar 

  • Miramirkhani, F., Uysal, M.: Channel modelling for indoor visible light communications. Philos. Trans. R. Soc. A 378(2169), 20190187 (2020)

    ADS  Google Scholar 

  • Mohsan, S.A.H., Amjad, H.: A comprehensive survey on hybrid wireless networks: practical considerations, challenges, applications and research directions. Optic. Quantum Electron 53(9), 1–56 (2021)

  • Mohsan, S.A.H., et al.: Impact of circular field in underwater wireless sensor networks. Int. J. Adv. Comput. Sci. Appl. 11(8), 218–223 (2020)

    Google Scholar 

  • Mohsan, S.A.H., et al.: Investigating transmission power control strategy for underwater wireless sensor networks. vol. 1304, pp. 836–846, (2020)

  • Mostafa, A., Lampe, L.: Optimal and robust beamforming for secure transmission in MISO visible-light communication links. IEEE Trans. Signal Process. 64(24), 6501–6516 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • Naribole, S., Chen, S., Heng, E., Knightly, E.: LiRa: a WLAN architecture for visible light communication with a Wi-Fi uplink. In: 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (2017), pp. 1–9

  • Nguyen, T., Islam, A., Hossan, T., Jang, Y.M.: Current status and performance analysis of optical camera communication technologies for 5G networks. IEEE Access 5, 4574–4594 (2017)

    Google Scholar 

  • Nguyen, D.T., Park, S., Chae, Y., Park, Y.: VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access 7, 22371–22376 (2019)

    Google Scholar 

  • Nistazakis, H.E., Karagianni, E.A., Tsigopoulos, A.D., Fafalios, M.E., Tombras, G.S.: Average capacity of optical wireless communication systems over atmospheric turbulence channels. J. Light. Technol. 27(8), 974–979 (2009)

    ADS  Google Scholar 

  • Nlom, S.M., Ndjiongue, A.R., Ouahada, K.: Cascaded PLC-VLC channel: an indoor measurements campaign. IEEE Access 6, 25230–25239 (2018)

    Google Scholar 

  • O’Brien, D., Rajbhandari, S., Chun, H.: Transmitter and receiver technologies for optical wireless. Philos. Trans. R. Soc. A 378(2169), 20190182 (2020)

    ADS  Google Scholar 

  • Palattella, M.R., et al.: Internet of things in the 5G era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)

    Google Scholar 

  • Pan, G., Ye, J., Ding, Z.: Secure hybrid VLC-RF systems with light energy harvesting. IEEE Trans. Commun. 65(10), 4348–4359 (2017)

    Google Scholar 

  • Panta, J., Saengudomlert, P., Sterckx, K.L., Pham, A.T.: Performance optimisation of indoor SVD-based MIMO-OFDM optical wireless communication systems. IET Optoelectron. 14(4), 159–168 (2020)

    Google Scholar 

  • Papanikolaou, V.K., Diamantoulakis, P.D., Sofotasios, P.C., Muhaidat, S., Karagiannidis, G.K.: On optimal resource allocation for hybrid VLC/RF networks with common backhaul. IEEE Trans. Cogn. Commun. Netw. 6(1), 352–365 (2020)

    Google Scholar 

  • Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015)

    Google Scholar 

  • Penning, J., Stober, K., Taylor, V., Yamada, M.: Energy Savings Forecast of Solid-state Lighting in General Illumination Applications. Navigant Consulting Inc., Washington (2016)

    Google Scholar 

  • Pesek, P., Zvánovec, S., Chvojka, P., Ghassemlooy, Z., Haigh, P.A.: Demonstration of a hybrid FSO/VLC link for the last mile and last meter networks. IEEE Photonics J. 11(1), 1–17 (2018)

    Google Scholar 

  • Pham, T.L., Shahjalal, M.D., Bui, V., Jang, Y.M.: Deep learning for optical vehicular communication. IEEE Access 8, 102691–102708 (2020)

    Google Scholar 

  • Pratama, Y.S.M., Choi, K.W.: Bandwidth aggregation protocol and throughput-optimal scheduler for hybrid RF and visible light communication systems. IEEE Access 6, 32173–32187 (2018)

    Google Scholar 

  • Qin, L., Niu, B., Li, B., Du, Y.: Indoor visible light high precision three-dimensional positioning algorithm based on single LED lamp. Optik (stuttg). 207, 163786 (2020)

    ADS  Google Scholar 

  • Rahman, M.H., Sejan, M.A.S., Kim, J.-J., Chung, W.-Y.: Reduced tilting effect of smartphone CMOS image sensor in visible light indoor positioning. Electronics 9(10), 1635 (2020)

    Google Scholar 

  • Ren, Y., Dang, A., Luo, B., Guo, H.: Capacities for long-distance free-space optical links under beam wander effects. IEEE Photonics Technol. Lett. 22(14), 1069–1071 (2010)

    ADS  Google Scholar 

  • Saeed, N., Guo, S., Park, K.-H., Al-Naffouri, T.Y., Alouini, M.-S.: Optical camera communications: survey, use cases, challenges, and future trends. Phys. Commun. 37, 100900 (2019)

    Google Scholar 

  • Saha, N., Ifthekhar, M.S., Le, N.T., Jang, Y.M.: Survey on optical camera communications: challenges and opportunities. Iet Optoelectron. 9(5), 172–183 (2015)

    Google Scholar 

  • Salmond, J.A., McKendry, I.G.: A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog. Phys. Geogr. 29(2), 171–188 (2005)

    Google Scholar 

  • Sandalidis, H.G.: Optimization models for misalignment fading mitigation in optical wireless links. IEEE Commun. Lett. 12(5), 395–397 (2008)

    Google Scholar 

  • Sarigiannidis, A.G., et al.: Architectures and bandwidth allocation schemes for hybrid wireless-optical networks. IEEE Commun. Surv. Tutorials 17(1), 427–468 (2014)

    Google Scholar 

  • Schirripa Spagnolo, G., Cozzella, L., Leccese, F.: Underwater Optical Wireless Communications: overview. Multidisciplinary Digital Publishing Institute, pp. 1–14, (2020)

  • Schulz, P., et al.: Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 55(2), 70–78 (2017)

    Google Scholar 

  • Schwarz, S., Philosof, T., Rupp, M.: Signal processing challenges in cellular-assisted vehicular communications: Efforts and developments within 3GPP LTE and beyond. IEEE Signal Process. Mag. 34(2), 47–59 (2017)

    ADS  Google Scholar 

  • Series, M.: Minimum requirements related to technical performance for IMT-2020 radio interface (s),” Report, p. 2410, (2017)

  • Sevincer, A., Bhattarai, A., Bilgi, M., Yuksel, M., Pala, N.: LIGHTNETs: smart LIGHTing and mobile optical wireless NETworks—A survey. IEEE Commun. Surv. Tutorials 15(4), 1620–1641 (2013)

    Google Scholar 

  • Shaddad, R.Q., Mohammad, A.B., Al-Gailani, S.A., Al-Hetar, A.M., Elmagzoub, M.A.: A survey on access technologies for broadband optical and wireless networks. J. Netw. Comput. Appl. 41, 459–472 (2014)

    Google Scholar 

  • Shafi, M., et al.: 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)

    Google Scholar 

  • Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green internet of things. IEEE Syst. J. 11(2), 983–994 (2015)

    ADS  Google Scholar 

  • Shao, Y., Deng, R., He, J., Wu, K., Chen, L.-K.: Real-time 2.2-Gb/s water-air OFDM-OWC system with low-complexity transmitter-side DSP. J. Light. Technol. 38(20), 5668–5675 (2020)

    ADS  Google Scholar 

  • Shao, S., et al.: An indoor hybrid WiFi-VLC internet access system. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, (2014) pp. 569–574

  • Shen, Z., Ma, J., Provost, S.B., Su, P.: Effects of transceiver jitter on the performance of optical scattering communication systems. Opt. Lett. 45(20), 5680–5683 (2020)

    ADS  Google Scholar 

  • Shiu, D., Kahn, J.M.: Differential pulse-position modulation for power-efficient optical communication. IEEE Trans. Commun. 47(8), 1201–1210 (1999)

    Google Scholar 

  • Singh, M.: Modeling and performance analysis of 10 Gbps inter-satellite optical wireless communication link. J. Opt. Commun. 39(1), 49–53 (2018)

    ADS  Google Scholar 

  • Sodnik, Z., Lutz, H., Furch, B., Meyer, R.: Optical satellite communications in Europe. Free-Space Laser Communication Technologies XXII 7587, 758705–758714 (2010)

    Google Scholar 

  • Son, I.K., Mao, S.: A survey of free space optical networks. Digit. Commun. Networks 3(2), 67–77 (2017)

    Google Scholar 

  • Song, X., Wang, M., Xing, S., Zhao, Z.: Progress of orthogonal frequency division multiplexing based on visible light communication. Laser Optoelectron. Prog 55, 120008 (2018)

    Google Scholar 

  • Spagnolo, G.S., Cozzella, L., Leccese, F., Sangiovanni, S., Podestà, L., Piuzzi, E.: Optical wireless communication and Li-Fi: a new infrastructure for wireless communication in saving energy era. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 2020, pp. 674–678

  • Sun, X.J., Li, S.H., Yan, W.X., Zhang, R.W., Zhang, C.L.: Non-line-of-sight optical scattering communication based on atmospheric inhomogeneity. Opt. Commun. 382, 318–323 (2017)

    ADS  Google Scholar 

  • Sun, Y., Ding, Z., Dai, X., Navaie, K., So, D.K.C.: Performance of downlink NOMA in vehicular communication networks: an analysis based on Poisson line cox point process. IEEE Trans. Veh. Technol. 69(11), 14001–14006 (2020a)

    Google Scholar 

  • Sun, X., et al.: A review on practical considerations and solutions in underwater wireless optical communication. J. Light. Technol. 38(2), 421–431 (2020b)

    ADS  Google Scholar 

  • Syed Agha Hassnain Mohsan, M.M., Hasan, M.H.A., Mazinani, A., Sadiq, M.A., Asad Islam, L.S.R.: A systematic review on practical considerations, recent advances and research challenges in underwater optical wireless communication. Int. J. Adv. Comput. Sci. Appl. 11(7), 162–172 (2020)

    Google Scholar 

  • Tan, J., Yang, K., Xia, M.: Adaptive equalization for high speed optical MIMO wireless communications using white LED. Front. Optoelectron. China 4(4), 454–461 (2011)

    ADS  Google Scholar 

  • Thielecke, L., Dreyer, N., Eckhardt, J.M., Kürner, T.: A ray optical diffraction model for car chassis in V2X communication. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), (2020), pp. 1–5

  • Trichili, A., Cox, M.A., Ooi, B.S., Alouini, M.-S.: Roadmap to free space optics. JOSA B 37(11), A184–A201 (2020)

    ADS  Google Scholar 

  • Tsai, W.-S., et al.: A 20-m/40-Gb/s 1550-nm DFB LD-based FSO link. IEEE Photonics J. 7(6), 1–7 (2015)

    Google Scholar 

  • Tsonev, D., et al.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett. 26(7), 637–640 (2014)

    ADS  Google Scholar 

  • Tsonev, D., Videv, S., Haas, H.: Towards a 100 Gb/s visible light wireless access network. Opt. Express 23(2), 1627–1637 (2015)

    ADS  Google Scholar 

  • Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E.: Optical Wireless Communications, pp. 107–122. Switz. springer, Cham (2016)

    Google Scholar 

  • Uysal, M., Nouri, H.: Optical wireless communications—An emerging technology. In: 2014 16th international conference on transparent optical networks (ICTON), (2014), pp. 1–7

  • Vieira, M., Vieira, M.A., Louro, P., Fantoni, A., Vieira, P.: Bi-directional VLC LED-assisted navigation system for large indoor environments. In: Fourth International Conference on Applications of Optics and Photonics, (2019), vol. 11207, p. 112070D

  • Vieira, M.A., Vieira, M., Louro, P., Vieira, P.: Bi-directional communication between infrastructures and vehicles through visible light. In: Fourth International Conference on Applications of Optics and Photonics, 2019, vol. 11207, p. 112070C

  • Wang, K.: Quasi-passive indoor optical wireless communication systems. IEEE Photonics Technol. Lett. 32(21), 1373–1376 (2020)

    ADS  Google Scholar 

  • Wang, Z., Yu, C., Zhong, W.-D., Chen, J., Chen, W.: Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems. Opt. Express 20(4), 4564–4573 (2012)

    ADS  Google Scholar 

  • Wang, T.Q., Sekercioglu, Y.A., Armstrong, J.: Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. J. Light. Technol. 31(11), 1744–1754 (2013)

    ADS  Google Scholar 

  • Wang, S.-W., et al.: A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 22(2), 61–67 (2015)

    ADS  Google Scholar 

  • Wang, Z., Wang, Q., Huang, W., Xu, Z.: Visible Light Communications: Modulation and Signal Processing. John Wiley & Sons, Hoboken (2017)

    Google Scholar 

  • Wang, J.-Y., Liu, C., Wang, J.-B., Wu, Y., Lin, M., Cheng, J.: Physical-layer security for indoor visible light communications: secrecy capacity analysis. IEEE Trans. Commun. 66(12), 6423–6436 (2018a)

    Google Scholar 

  • Wang, K., et al.: High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit. Opt. Lett. 43(13), 3132–3135 (2018b)

    ADS  Google Scholar 

  • Wang, F., et al.: Secrecy analysis of generalized space-shift keying aided visible light communication. IEEE Access 6, 18310–18324 (2018c)

    Google Scholar 

  • Wang, F., et al.: Optical jamming enhances the secrecy performance of the generalized space-shift-keying-aided visible-light downlink. IEEE Trans. Commun. 66(9), 4087–4102 (2018d)

    ADS  Google Scholar 

  • Wang, J.-Y., Ge, H., Lin, M., Wang, J.-B., Dai, J., Alouini, M.-S.: On the secrecy rate of spatial modulation-based indoor visible light communications. IEEE J. Sel. Areas Commun. 37(9), 2087–2101 (2019a)

    Google Scholar 

  • Wang, J., et al.: Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation. Opt. Commun. 451, 181–185 (2019b)

    ADS  Google Scholar 

  • Wang, Y., Wu, X., Hou, Y., Cheng, P., Liang, Y., Li, L.: Full-range led dimming driver with ultrahigh frequency PWM shunt dimming control. IEEE Access 8, 79695–79707 (2020)

    Google Scholar 

  • Weisman, M.J., Dagefu, F.T., Moore, T.J., Arslan, C.H., Drost, R.J.: Analysis of the low-probability-of-detection characteristics of ultraviolet communications. Opt. Express 28(16), 23640–23651 (2020)

    ADS  Google Scholar 

  • Weiß, M., Huchard, M., Stöhr, A., Charbonnier, B., Fedderwitz, S., Jäger, D.S.: 60-GHz photonic millimeter-wave link for short-to medium-range wireless transmission up to 12.5 Gb/s. J. Light. Technol. 26(15), 2424–2429 (2008)

    ADS  Google Scholar 

  • Willner, A.E., et al.: Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos. Trans. r. Soc. A Math. Phys. Eng. Sci. 375(2087), 20150439 (2017)

    ADS  Google Scholar 

  • Wilson, K.E.: An overview of the GOLD experiment between the ETS-VI satellite and the table mountain facility, Telecommun. Data Acquis. Prog. Rep. 42–124, October–December 1995, pp. 8–19, (1996)

  • Wu, W.: Spectrum sensing in optical wireless communication network. Trans. Emerg. Telecommun. Technol. 31(4), e3716 (2020)

    Google Scholar 

  • Wu, Y., Tornatore, M., Ferdousi, S., Mukherjee, B.: Green data center placement in optical cloud networks. IEEE Trans. Green Commun. Netw. 1(3), 347–357 (2017)

    Google Scholar 

  • Wu, X., Soltani, M.D., Zhou, L., Safari, M., Haas, H.: Hybrid LiFi and WiFi networks: a survey. IEEE Commun. Surv. Tutorials 23(2), 1398–1420 (2021)

    Google Scholar 

  • Xu, G., Lai, J.: Scintillation index and BER performance for optical wave propagation in anisotropic underwater turbulence under the effect of eddy diffusivity ratio. Appl. Opt. 59(8), 2551–2558 (2020)

    ADS  Google Scholar 

  • Xu, G., Song, Z.: Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels. Opt. Express 26(7), 8566–8580 (2018)

    ADS  Google Scholar 

  • Xu, G., Song, Z.: Effects of solar scintillation on deep space communications: challenges and prediction techniques. IEEE Wirel. Commun. 26(2), 10–16 (2019)

    MathSciNet  Google Scholar 

  • Xu, G., Zhang, Q.: Mixed RF/FSO deep space communication system under solar scintillation effect. IEEE Trans. Aerosp. Electron. Syst. 57(5), 3237–3251 (2021)

  • Xu, J., et al.: Underwater wireless optical communication using a blue-light leaky feeder. Opt. Commun. 397, 51–54 (2017)

    ADS  Google Scholar 

  • Xu, Z., Xu, G., Zheng, Z.: BER and channel capacity performance of an FSO communication system over atmospheric turbulence with different types of noise. Sensors 21(10), 3454 (2021)

    ADS  Google Scholar 

  • Xue, J., et al.: An intra-chip free-space optical interconnect. ACM SIGARCH Comput. Archit. News 38(3), 94–105 (2010)

    Google Scholar 

  • Yamazato, T., et al.: The uplink visible light communication beacon system for universal traffic management. IEEE Access 5, 22282–22290 (2017)

    Google Scholar 

  • Yang, Y., Chen, M., Guo, C., Feng, C., Saad, W.: Power efficient visible light communication with unmanned aerial vehicles. IEEE Commun. Lett. 23(7), 1272–1275 (2019)

    Google Scholar 

  • Yang, X., Xu, J.: New receiver designs for underwater wireless optical communications. In: Asia Communications and Photonics Conference, (2019), pp. T2B-1

  • Yin, L., Haas, H.: Physical-layer security in multiuser visible light communication networks. IEEE J. Sel. Areas Commun. 36(1), 162–174 (2017)

    Google Scholar 

  • Yoshida, K., et al.: 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11(1), 1–7 (2020)

    Google Scholar 

  • Yu, C., Kong, M., Sun, B., Xu, J.: Underwater wireless optical communication: a review. In: 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2017, pp. 1–2

  • Yu, Y.-L., Liaw, S.-K., Kishikawa, H., Goto, N.: Analysis of fiber based emitting head for optical wireless communication. In: 2019 24th Microoptics Conference (MOC), (2019), pp. 194–195

  • Yu, C., You, X., Liu, Z., Chen, J.: Conceptual design for indoor visible light communication and positioning cooperative systems. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON), (2020), pp. 1–4

  • Yuan, R., Ma, J.: Review of ultraviolet non-line-of-sight communication. China Commun. 13(6), 63–75 (2016)

    Google Scholar 

  • Zafar, S., Khalid, H.: Free space optical networks: applications, challenges and research directions. Wirel. Pers. Commun. 121, 429–457 (2021)

    Google Scholar 

  • Zaiton, A.M., Muhammad, H.R., Jasman, F.: Solar panel receiver characterisation for indoor visible light communication system. J. Phys: Conf. Ser. 1502(1), 12016 (2020)

    Google Scholar 

  • Zeng, H., Zhou, X., Zhang, L., Dong, X.: Synthesis and luminescence properties of a novel red long lasting phosphor Y2O2S: Eu3+, Si4+, Zn2+. J. Alloys Compd. 460(1–2), 704–707 (2008)

    Google Scholar 

  • Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutorials 19(1), 204–238 (2016)

    Google Scholar 

  • Zhang, S., et al.: 1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. J. Light. Technol. 31(8), 1211–1216 (2013)

    ADS  Google Scholar 

  • Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., Sato, T.: One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet Things J. 3(6), 1346–1354 (2016)

    Google Scholar 

  • Zhang, Y.-Y., Yu, H.-Y., Zhang, J.-K., Zhu, Y.-J., Wang, J.-L., Wang, T.: Space codes for MIMO optical wireless communications: error performance criterion and code construction. IEEE Trans. Wirel. Commun. 16(5), 3072–3085 (2017)

    Google Scholar 

  • Zhang, L., Liang, Y.-C., Xiao, M.: Spectrum sharing for Internet of Things: a survey. IEEE Wirel. Commun. 26(3), 132–139 (2018)

    Google Scholar 

  • Zhang, Y., Rong, G., Qu, S., Song, Q., Tang, X., Zhang, Y.: A high-power LED driver based on single inductor-multiple output DC–DC converter with high dimming frequency and wide dimming range. IEEE Trans. Power Electron. 35(8), 8501–8511 (2020a)

    ADS  Google Scholar 

  • Zhang, L., et al.: Over 10 attenuation length gigabits per second underwater wireless optical communication using a silicon photomultiplier (SiPM) based receiver. Opt. Express 28(17), 24968–24980 (2020b)

    ADS  Google Scholar 

  • Zhang Huan, Z., Yufeng, Y., Mingzheng, J.: Design of full duplex visible light communication system based on single light source. Laser Optoelectron. Prog. 56, 010603 (2019)

    Google Scholar 

  • Zhao, X., Chen, H., Sun, J.: On physical-layer security in multiuser visible light communication systems with non-orthogonal multiple access. IEEE Access 6, 34004–34017 (2018)

    Google Scholar 

  • Zheng, Z., Du, H., Xue, J., Wu, Z.: Adaptive spatial modulation for indoor visible light communications. IEEE Commun. Lett. 24(10), 2240–2244 (2020)

    Google Scholar 

  • Zhou, Y., et al.: Comparison of nonlinear equalizers for high-speed visible light communication utilizing silicon substrate phosphorescent white LED. Opt. Express 28(2), 2302–2316 (2020)

    ADS  Google Scholar 

  • Zhu, K., Solmeyer, N., Weiss, D.S.: A low noise, nonmagnetic fluorescence detector for precision measurements. Rev. Sci. Instrum. 83(11), 113105 (2012)

    ADS  Google Scholar 

  • Zou, D., Li, S.-B., Xu, Z.: Improving the NLOS optical scattering channel via beam reshaping. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, (2014), pp. 1372–1375

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Agha Hassnain Mohsan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsan, S.A.H., Mazinani, A., Sadiq, H.B. et al. A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions. Opt Quant Electron 54, 187 (2022). https://doi.org/10.1007/s11082-021-03442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03442-5

Keywords

Navigation