Skip to main content
Log in

Research of an optical device based on an anisotropic epsilon-near-zero metamaterial

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a novel design of an electro-tunable narrow channel based on an anisotropic epsilon-near-zero metamaterial is presented. The ENZ condition can be flexibly tuned by an applied gate voltage. This permittivity-tunable channel is composed of periodic alternating layers of graphene and nanoglass with a thickness of 3 nm. Additionally, a dual output light modulator is utilized to expand its application. Numerical analysis results show that the maximum transmittance of the incident light can reach 96.7%, and the extinction ratio of the device is 14.8 dB when the gate voltage is added to 4.96 V at the near-infrared wavelength. This ultracompact optical device may open a new realm in highly integrated photonic circuits, especially on the nano-chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data sets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Askari, M., Hosseini, M.V.: A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt. Quantum Electron. 52(4) (2020)

  • Chen, J., Zhi, L., Song, Y., et al.: Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides. Opt. Express 17(26), 23603–23609 (2009)

    Article  ADS  Google Scholar 

  • Danilov, D., Hahn, H., Gleiter, H., et al.: Mechanisms of nanoglass ultrastability. ACS Nano 10(3), 3241–3247 (2016)

    Article  Google Scholar 

  • Denard, RH.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits (1974)

  • Ding, K., Shen, Y., Ng, J., et al.: Equivalent-medium theory for metamaterials made by planar electronic materials. EPL 102(2), 28005 (2013)

    Article  ADS  Google Scholar 

  • Edwards, B., Alu, A., Young, M.E., Silveirinha, M., Engheta, N.: Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008)

    Article  ADS  Google Scholar 

  • Efazat, S.S., Basiri, R., Jam, S.: Optimization based design of a wideband near zero refractive index metasurface for gain improvement of planar antennas in the terahertz band. Opt. Quantum Electron. 52(12) (2020)

  • Efetov, D.K., Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105(25), 256805 (2010)

    Article  ADS  Google Scholar 

  • Emadi, R., Safian, R., Nezhad, A.Z.: Plasmonic cloaking for irregular inclusions using an epsilon-near-zero region composed of a graphene–silica stack. J. Opt. Soc. Am. B 35(3), 643 (2018)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  • Gric, T., Hess, O.: Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express 25(10), 11466 (2017)

    Article  ADS  Google Scholar 

  • Gric, T., Hess, O. et al.: Surface plasmon polaritons at the interface of two nanowire metamaterials. J. Opt. 19(8) (2017)

  • Gric, T., Hess, O., et al.: Surface waves supported by the nanostructured semiconductor metamaterials. J. Electromagn. Waves Appl. 2018.

  • Huang, Y., Li, J.: Total reflection and cloaking by triangular defects embedded in zero-index metamaterials. Adv. Appl. Math. Mech. 7, 135–144 (2015)

    Article  MathSciNet  Google Scholar 

  • Hui, F.M., Jin, H.S., Wei, X.J., et al.: Experimental realization of bending waveguide using anisotropic zero-index materials. Appl. Phys. Lett. 101(25), 3966 (2012)

    Google Scholar 

  • Ioannidis, T., Gric, T., Rafailov, E.: Surface plasmon polariton waves propagation at the boundary of graphene-based metamaterial and corrugated metal in THz range. Opt. Quantum Electron. 52(1), 10.1–10.12 (2020)

    Article  Google Scholar 

  • Kim, N.S., Austin, T., Baauw, D., et al.: Leakage current: Moore’s law meets static power. Computer 36(12), 68–75 (2003)

    Article  Google Scholar 

  • Klimchitskaya, G.L., Mostepanenko, V.M.: Conductivity of pure graphene: theoretical approach using the polarization tensor. Phys. Rev. B, Condens. Matter Mater. Phys. (2016)

  • Kundtz, N., Smith, D.R.: Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010)

    Article  ADS  Google Scholar 

  • Li, Z., Guo, Z., Li, X., et al. Graphene light modulator based on dual-ring resonator structure. Opt. Quantum Electron. 52(6) (2020)

  • Lu, Z.: Nanoscale electro-optic modulators based on graphene-slot. J. Opt. Soc. Am. B 29(6), 1490–1496 (2012)

    Article  ADS  Google Scholar 

  • Maas, R., Parsons, J., Engheta, N., Polman, A.: Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photon. 7, 907–912 (2013)

    Article  ADS  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N., et al.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)

    Article  ADS  Google Scholar 

  • Niu, X., Hu, X., Chu, S., et al. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 1701292 (2018)

  • Ourir, A., Maurel, A., Pagneux, V.: Tunneling of electromagnetic energy in multiple connected leads using -near-zero materials. Opt. Lett. 38(12), 2092–2094 (2013)

    Article  ADS  Google Scholar 

  • Papasimakis, N., Thongrattanasiri, S., Zheludev, N.I., et al.: The magnetic response of graphene split-ring metamaterials. Light Sci. Appl. 2(7), e78 (2013)

    Article  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  • Pham, T.A., Li, T., Shankar, S., Gygi, F., Galli, G.: First-principles investigations of the dielectric properties of crystalline and amorphous Si3N4 thin films. Appl. Phys. Lett. 96(6), 25 (2010)

    Article  Google Scholar 

  • Reynard, J.P., Verove, C., Sabouret, E., et al.: Integration of fluorine-doped silicon oxide in copper pilot line for 012-μm technology. Microelectron. Eng. 60(1), 113–118 (2002)

    Article  Google Scholar 

  • Shen, A., et al.: Proposal for an optical switch based on graphene-silicon-waveguide microring. IEEE Photonics Technol. Lett. (2014).

  • Silveirinha, M.G., Engheta, N.: Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using e near-zero metamaterials. Phys. Rev. B Condens. Matter Mater. Phys. 76(24): 2451091–24510917 (2007)

  • Silveirinha, M., Engheta, N.: Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97(15), 157403 (2006)

    Article  ADS  Google Scholar 

  • Smith, D.R, Pendry, J.B., et al.: Metamaterials and negative refractive index. Science (2004)

  • Soto, W.G., Soto, A.I. Controlling the extinction ratio in optical networks. US (2005)

  • Stauber, T., Peres, N., Geim, A.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8) (2008)

  • Wu, Y., Li, J.: Total reflection and cloaking by zero-index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 101, 4184 (2013)

    Google Scholar 

  • Wu, K., Meng, Y., Xu, J., et al.: Novel Fe-based nanoglass as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. Scripta Mater. 188, 135–139 (2020)

    Article  Google Scholar 

  • Xiao, Y.H., Rui, L.: Comparison of graphene-based transverse magnetic and electric surface plasmon modes. IEEE J. Sel. Top. Quantum Electron. 20(1), 62–67 (2013)

    Article  Google Scholar 

  • Xu, Y., Chen, H.: Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett. 98, 113501 (2011)

    Article  ADS  Google Scholar 

  • Xu, Z., Zhu, J., Xu, W., et al.: Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength. Chin. Phys. B 27(08), 46–51 (2018)

    Article  Google Scholar 

  • Yang, L., Pei, C., Ao, S., et al.: Ultracompact plasmonic switch based on graphene-silica metamaterial. Appl. Phys. Lett. 104(21), 157403 (2014)

    Article  Google Scholar 

  • Yang, L., Hu, T., Shen, A., et al.: Ultracompact optical modulator based on graphene-silica metamaterial. Opt. Lett. 39(7), 1909–1912 (2014b)

    Article  ADS  Google Scholar 

  • Zhu, B., Ren, G., Zheng, S., et al.: Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 21(14), 17089–17096 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hebei Province grant (No: F2017203316) in China, the Youth Fund Project of Hebei Provincial Department of Education (No: QN2019061) in China.

Author information

Authors and Affiliations

Authors

Contributions

Zhibin Wang, Qiufan Cheng, Xin Li contributed to the conception of the study; Zhibin Wang, Qiufan Cheng, Zhiquan Li contributed to analysis and manuscript preparation; Qiufan Cheng and Shuhan Meng performed the data analyses and wrote the manuscript.

Corresponding author

Correspondence to Zhiquan Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Ethics approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The participant has consented to the submission of the case report to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cheng, Q., Li, X. et al. Research of an optical device based on an anisotropic epsilon-near-zero metamaterial. Opt Quant Electron 54, 77 (2022). https://doi.org/10.1007/s11082-021-03426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03426-5

Keywords

Navigation