Skip to main content
Log in

BER analysis of FSO system with Airy beam as carrier over exponentiated Weibull channel model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Average Bit Error Rate (BER) expression of free-space optical (FSO) communication links with Airy beam as signal carrier under weak atmospheric turbulence and on–off keying modulation scheme is derived based on scintillation index of Airy beam and Exponentiated Weibull channel model. The average BER has been evaluated at different transverse scale factors and exponential decay factors of Airy beam and link distances. And comparison of the average BER of FSO links with Airy beam and Gaussian beam as signal carrier has been carried out. The simulation results show that the average BER of FSO links with Airy beam as carrier decreases with the increase of mean signal to noise ratio and increases with the increase of transmission distance. When the transverse scale factor is about 1.5 cm, a lower average BER can be obtained. And the smaller the exponential decay factor is, the lower the average BER is. Under the same atmospheric turbulence condition, the average BER of FSO links with Airy beam as carrier is obviously better than that of FSO links with Gaussian beam as carrier. The results of this research have some significance for the application of Airy beam in FSO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source power and at constant propagation distance L = 3000 m and exponential decay factor ax = 0.5

Fig. 6

source width value of 1.5 cm

Fig. 7

source width value of 2 cm

Similar content being viewed by others

References

  • Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press, Bellingham, Washington USA (2002)

    Google Scholar 

  • Barrios, R., Dios, F.: Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating atmospheric turbulence. Opt. Laser Technol. 45, 13–20 (2013)

    Article  ADS  Google Scholar 

  • Bosu, R., Prince, S.: Mitigation of turbulence induced scintillation using concave mirror in reflection-assisted OOK free space optical links. Opt. Commun. 432, 101–111 (2019)

    Article  ADS  Google Scholar 

  • Chaaban, A., Morvan, J.-M., Alouini, M.-S.: Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Trans. Commun. 64(3), 1176–1191 (2016)

    Article  Google Scholar 

  • Chaudhary, S., Amphawan, A., Nsar, K.: Realization of free space optics with OFDM under armospheric turbulence[J]. Optik 125, 5196–5198 (2014)

    Article  ADS  Google Scholar 

  • Chen, C., Yang, H., Kavehrad, M., et al.: Propagation of radial Airy array beams through atmospheric turbulence. Opt. Lasers Eng. 52, 106–114 (2014)

    Article  Google Scholar 

  • Chu, X.: Evolution of an Airy beam in turbulence. Opt. Lett. 36(4), 2701–2703 (2011)

    Article  ADS  Google Scholar 

  • Chu, X., Zhao, S., Fang, Y.: Maximum non-diffracting propagation distance of aperture-truncated Airy beams. Opt. Commun. 414, 5–9 (2018)

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T.: Scintillation behavior of Airy beam. Opt. Laser Technol. 47, 232–236 (2013)

    Article  ADS  Google Scholar 

  • Giri, R.K., Patnaik, B.: BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model. Opt. Quant. Electron. 50, 231 (2018)

    Article  Google Scholar 

  • Gu, Y., Gbur, G.: Scintillation of airy beam arrays in atmospheric turbulence. Opt. Lett. 35(20), 3456–3458 (2010)

    Article  ADS  Google Scholar 

  • Ji, X., Eyyuboğlu, H.T., et al.: Propagation of an Airy beam through the atmosphere. Opt. Express 21(2), 2154–2164 (2013)

    Article  ADS  Google Scholar 

  • Jiaan, W., Xinlan, W., Linyang, G., Ying, C., Peng, Y.: Light intensity scintillation of Airy beam. Acta Optica Sinica 37(1), 0626001 (2017)

    Article  Google Scholar 

  • Jiawei, L., Weibiao, C.: Investigation on bandwidth of adaptive optical system in satellite-ground coherent optical communication. Chin. J. Lasers 43(8), 0806003-1-0806003–6 (2016)

    Article  Google Scholar 

  • Kolbig, K.S., Prudnikov, A.P., Bryckov, Y.A., et al.: Integrals and series: more special functions. Math. Comput. 44(170), 573 (1985)

    Article  Google Scholar 

  • Liang, Yi., Yi, Hu., Song, D., Lou, C., Zhang, X., Chen, Z., Jingjun, Xu.: Image signal transmission with Airy beams. Opt. Lett. 40(23), 5686–5689 (2015)

    Article  ADS  Google Scholar 

  • Lyke, S.D., Voelz, D.G., Roggemann, M.C.: Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links. Appl. Opt. 48(33), 6511–6527 (2009)

    Article  ADS  Google Scholar 

  • Mahdieh, M.H., Pournoury, M.: Atmospheric and numeric evaluation of bit error rate (BER) in free-space communication. Opt. Laser Technol. 42, 55–60 (2010)

    Article  ADS  Google Scholar 

  • Nagar, H., Dekel, E., Kasimov, D., Roichman, Y.: Non-diffracting beams for label-free imaging through turbid media. Opt. Lett. 43(2), 190–193 (2018)

    Article  ADS  Google Scholar 

  • Peleg, A., Moloney, J.V.: Scintillation reduction by use of multiple Gaussian laser beams with different wavelengths[J]. IEEE Photon. Technol. Lett. 19(12), 883–889 (2007)

    Article  ADS  Google Scholar 

  • Qiang, Lu., Gao, S., Sheng, L., Jiabin, Wu., Qiao, Y.: Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence. Appl. Opt. 56(13), 3750–3757 (2017)

    Article  ADS  Google Scholar 

  • Rose, P., Diebel, F., Boguslawski, M., Denz, C.: Airy beam induced optical routing. Appl. Phys. Lett. 102, 101101 (2013)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite energy Airy beams. Opt. Lett. 32(8), 979–981 (2007)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beams. Phy. Rev. Lett. 99(21), 213901 (2007)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Ballistic dynamics of Airy beams. Opt. Lett. 33(3), 207–209 (2008)

    Article  ADS  Google Scholar 

  • Sun, X., Djordjevic, I.B.: Physical-layer security in orbital angular momentum multiplexing free-space optical communications. IEEE Photonics J. 8(1), 7901110 (2016)

    Google Scholar 

  • Tao, R., Si, L., Yanxing Ma, Pu., Zhou, Z.L.: Average spreading of finite energy Airy beams in non-Kolmogorov turbulence. Opt. Lasers Eng. 51, 488–492 (2013)

    Article  Google Scholar 

  • Vorontsov, M.A., Dudorov, V.V., Zyryanova, M.O.: Bit error rate in free-space optical communication systems with a partially coherent transmitting beam[J]. Atmos. Ocean. Opt. 26(3), 185–189 (2013)

    Article  Google Scholar 

  • Wen, W., Chu, X.: Beam wander of partially coherent Airy beams. J. Mod. Opt. 61(5), 379–384 (2014)

    Article  ADS  Google Scholar 

  • Wen, W., Chu, X., Ma, H.: The propagation of a combining Airy beam in turbulence. Opt. Commun. 336, 326–329 (2015a)

    Article  ADS  Google Scholar 

  • Wen, W., Chu, X., Cai, Y.: Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere. Opt. Laser Technol. 68, 6–10 (2015b)

    Article  ADS  Google Scholar 

  • Wen, W., Jing, Y., Mingjun, Hu., Liu, X., Cai, Y., Zou, C., Luo, Mi., Zhou, L., Chu, X.: Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere. Opt. Commun. 415, 48–55 (2018)

    Article  ADS  Google Scholar 

  • Xingchun, C., Shanghong, Z., Zhen, C., Yongjun, Li., Ruixin, Li., Yingwu, F.: Research progress of Airy beam and feasibility analysis for its application in FSO system. Chin. Sci. Bull. 61(17), 1962–1974 (2016)

    Google Scholar 

  • Yifan, Z., Tao, G.: Generation of high-quality circular Airy beams in laser resonator. Acta. Phys. Sin. 69(1), 014205 (2020)

    Google Scholar 

  • Yiqing, Xu., Zhou, G.: The far-field divergent properties of an Airy beam. Opt. Laser Technol. 44(5), 1318–1323 (2012)

    Article  Google Scholar 

  • Yulong, Fu., Ma, J., Siyuan, Yu., Tan, L.: BER performance analysis of coherent SIMO FSO systems over correlated non-Kolmogorov turbulence fading with nonzero boresight pointing error. Opt. Commun. 430, 31–38 (2019)

    Article  ADS  Google Scholar 

  • Zhang, H., Tang, X., Lin, B., Zhou, Z., Lin, C., Chaudhary, S., Ghassemlooy, Z., Li, Z.: Performance analysis of FSO system with different modulation schemes over gamma-gamma turbulence channel[C]. In: Proc. Of SPIE, 11048, ISSN 0277–786X (2019)

  • Zhao, J., Zhao, S., Zhao, W., Li, Y., Liu, Y., Li, X.: Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system. Opt. Commun. 359, 189–194 (2016)

    Article  ADS  Google Scholar 

  • Zhu, G., Wen, Y., Xiong, Wu., Chen, Y., Liu, J., Siyuan, Yu.: Obstacle evasion in free-space optical communications utilizing Airy beams. Opt. Lett. 43(6), 1203–1206 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shaanxi Provincial Natural Science Foundation of China (Grant Number 2019JM-176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchun Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Liu, R., Li, Y. et al. BER analysis of FSO system with Airy beam as carrier over exponentiated Weibull channel model. Opt Quant Electron 53, 692 (2021). https://doi.org/10.1007/s11082-021-03352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03352-6

Keywords

Navigation