Skip to main content
Log in

Transient response analysis of quantum well infrared photodetector

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a simple transport model is developed using the rate and continuity equation for the analysis of transient response of a multiple quantum well infrared photodetector. The effect of carrier capture and the doping dependent optical absorption are incorporated in the model for accurate estimation of responsivity in the frequency domain. In case of high capture time, 3 dB bandwidth swings 5 GHz for M = 10 by changing doping from 1.2 × 1017 cm−3 to 1 × 1018 cm−3 whereas it swings only 0.9 GHz for M = 52. Moreover, barrier width and QW periods on the transient responsivity and bandwidth of the detector has been examined and the results have been found out to be of great significance. However, responsivity variation with QW periods bears very less significance for LB > 48 nm. The role of capture time (1 ps–11 ps) on the 3 dB bandwidth has also been studied and the result shows a significant drop from 95 to 76 GHz for M = 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adachi, S.: In Properties of Aluminium Gallium Arsenide, edited by S. Adachi (INSPEC, London,) , p. 58 (1993)

  • Arslan, Y., Oguz, F., Besikci, C.: 640 x 512 extended short wavelength infrared In0.83Ga0.17As focal plane array. IEEE J. Quant. Electron. 50(12), 957–964 (2014)

    Article  ADS  Google Scholar 

  • Bandara, K.M.S.V., Levine, B.F., Leibenguth, R.E., Asom, M.T.: Optical and transport properties of single quantum well infrared photodetectors. J. Appl. Phys. 74(3), 1826 (1993)

    Article  ADS  Google Scholar 

  • Besikci, C.: High-xInP/InxGa1-xAs quantum well infrared photodetector. Infrared Phys. Technol. 95, 152–157 (2018)

    Article  ADS  Google Scholar 

  • Billaha M.A., Das, M.K.: Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto Electron. Rev. 24(1), 25–33 (2016)

  • Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975)

    Article  Google Scholar 

  • Dingle, R., Weisbuch, C., Störmer, H.L., Morkoç, H., Cho, A.Y.: Characterization of high purity GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 40, 507 (1982)

    Article  ADS  Google Scholar 

  • El-Tokhy, M.S., Mahmoud, I.I., Konber, H.A.: Comparative study between different quantum infrared photodetectors. Opt. Quant. Electron. 41, 933–956 (2009)

    Article  Google Scholar 

  • Ershov, M., Hamaguchi, C., Ryzhii, V.: Device physics and modelling of multiple quantum well infrared photodetectors. Jpn. J. Appl. Phys. 35, 1395–1400 (1996)

    Article  ADS  Google Scholar 

  • Ershov, M., Satou, S., Ikebe, Y.: Analytical model of transient photoresponse of quantum well infrared photodetectors. J. Appl. Phys. 86, 6442–6450 (1999)

    Article  ADS  Google Scholar 

  • Grant, P.D., Dudek, R., Wolfson, L., Buchanan, M., Liu, H.C.: Ultra-high frequency monolithically integrated quantum well infrared photodetector up to 75 GHz. Electron. Lett. 41, 214–215 (2005)

    Article  ADS  Google Scholar 

  • Guériaux, V., Nedelcu, A., Bois, P.: Double barrier strained quantum well infrared photodetectors for the 3–5µm atmospheric window. J. Appl. Phys. 105, 114515 (2009)

  • Guzrnán, A., Sánchez-Rojas, J.L., Tijero, J M.G. et al.: “Optical characterisation of quantum well infra-red detector structures”, IEE Proc.-Optoelectron.,vol. 146, p. 89, 1999.

  • Handbook of Infra-Red Detection Technologies, pp. 121–158. Elsevier, 2002.

  • Harrison, P.: Quantum wells, wires and dots: Theoretical and Computational Physics of SemiconductorNanostructures, 2nd edn. John Wiley and Sons Ltd., Chichester (2005)

    Book  Google Scholar 

  • Jansen-van Vuuren, R.D., Armin, A., Pandey, A.K., Burn, P.L., Meredith, P.: Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28, 4766–4802 (2016)

  • Jiang, J., Razeghi, M.: GaInAs(P) based QWIPs on GaAs, InP, and Si substrates for focal plane arrays. In: M. Henini and M. Razeghi (2002)

  • Lee, J.-H., Chang, C.-Y., Li, C.-H., Lin, S.-Y., Lee, S.-C.: Performance improvement of AlGaAs/GaAs QWIP by NH3 plasma treatment. IEEE J. Quant. Electron. 48, 922–926 (2012)

    Article  ADS  Google Scholar 

  • Levine, B.F., Bethea, C.G., Choi, K.K., Walker, J., Malik, R.J.: Bound-to-extended absorption GaAs superlattice transport infrared detectors. J. Appl. Phys. 64, 1591 (1988)

    Article  ADS  Google Scholar 

  • Liu, H.C., Jenkins, G.E., Brown, E.R., McIntosh, K.A., Nichols, K.B., Manfra, M.J.: Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors. IEEE Electron. Device Lett. 16, 253–255 (1995a)

    Article  ADS  Google Scholar 

  • Liu, H.C., Li, J., Brown, E.R., McIntosh, K.A., Nichols, K.B., Manfra, M.J.: Quantum well intersubband heterodyne infrared detection upto 82 GHz. Appl. Phys. Lett. 67, 1594–1596 (1995b)

    Article  ADS  Google Scholar 

  • Liu, H.C., Li, J., Buchanan, M., Wasilewski, Z.R.: High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique. IEEE J. Quantum. Electron. 32, 1024–1028 (1996)

    Article  ADS  Google Scholar 

  • Palaferri, D., Todorov, Y., Bigioli, A., Mottaghizadeh, A., Gacemi, D., Calabrese, A., Vasanelli, A., Li, L., Davies, A.G., Linfield, E.H., et al.: Room-temperature nine-μm wavelength photodetctors and GHz-frequency heterodyne receivers. Nature 556, 85–88 (2018)

    Article  ADS  Google Scholar 

  • Quay, R., Moglestue, C., Palankovski, V., Selberherr, S.: A temperature dependent model for the saturation velocity in semiconductor materials. Material Sci. in Semicon. Proc. 3, 149–155 (2000)

    Article  Google Scholar 

  • Razeghi, M.: The MOCVD challenge: a survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications, 2nd edn. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  • Rogalski, A.: Comparison of the performance of quantum well and conventional bulk infrared photodetectors. Infrared Phys. Technol. 38, 295–310 (1997)

    Article  ADS  Google Scholar 

  • Rogalski, A.: HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005)

    Article  ADS  Google Scholar 

  • Rosencher, E., Vinter, B., Luc, F., Thibaudeau, L., Bois, P., Nagle, J.: Emission and capture of electrons in multiquantum-well structures. IEEE Trans. Quan. Elec. 30, 2875 (1994)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Characteristics of quantum well infrared photodetectors. J. Appl. Phys. 81, 6442–6448 (1997a)

    Article  ADS  Google Scholar 

  • Ryzhii, V., Khmyrova, I., Ryzhii, M.: High-frequency response of intersubband infrared photodetectors with a multiple quantum well structure. Jap. J. Appl. Phys. 36, 2596–2600 (1997)

    Article  ADS  Google Scholar 

  • Ryzhii, V., Liu, H.C.: Contact and space-charge effects in quantum well infrared photodetectors. Jpn. J. Appl. Phys. 38, 5815–5822 (1999)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Theory of quantum well IR photodetectors with tunnelling electron injection. IEE Proc.-Optoelectron. 144(5), 343–349 (1997)

  • Schneider, H., Liu, H.C.: Quantum well infrared photodetectorsphysics and applications. Springer-Verlag, New York (2007)

    Google Scholar 

  • Szweda, R.: QWIPs – Multi-spectral mine clearance and medical. III-Vs Rev. 18, 44–47 (2005)

    Google Scholar 

  • Thibaudeau, L., Bois, P., Duboz, J.Y.: A self-consistent model for quantum well infrared photodetectors. J. Appl Phys. 79, 446 (1996)

    Article  ADS  Google Scholar 

  • Tsang, W.T.: Chemical beam epitaxy of InGaAs. J. Appl. Phys. 58, 1415 (1985)

    Article  ADS  Google Scholar 

  • Vurguftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Zhang, D.H., Sun, L., Yuan, K.H., Yoon, S.F., Radhakrishnan, K.: InGaAsP/InP long wavelength quantum well infrared photodetectors. Thin Solid Films 515, 4450–4453 (2007)

    Article  ADS  Google Scholar 

  • Zhao, Z., Liu, J., Liu, Y., Zhu, N.: High-speed photodetectors in optical communication system. J. Semicond. 38, 121001 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Aref Billaha.

Ethics declarations

Conflict of interests

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billaha, M.A., Das, M.K. Transient response analysis of quantum well infrared photodetector. Opt Quant Electron 53, 451 (2021). https://doi.org/10.1007/s11082-021-03113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03113-5

Keywords

Navigation