Skip to main content
Log in

Optical designs for realization of a set of schemes for quantum cryptography

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Several quantum cryptographic schemes have been proposed and realized experimentally in the past. However, even with an advancement in quantum technology and escalated interest in the designing of direct secure quantum communication schemes there are not many experimental implementations of these cryptographic schemes. In this paper, we have provided a set of optical circuits for such quantum cryptographic schemes, which have not yet been realized experimentally by modifying some of our theoretically proposed secure communication schemes. Specifically, we have proposed optical designs for the implementation of two single photon and one entangled state based controlled quantum dialogue schemes and subsequently reduced our optical designs to yield simpler designs for realizing other secure quantum communication tasks, i.e., controlled deterministic secure quantum communication, quantum dialogue, quantum secure direct communication, quantum key agreement, and quantum key distribution. We have further proposed an optical design for an entanglement swapping based deterministic secure quantum communication and its controlled counterpart. Finally, a brief discussion on security of the schemes, hacking strategies against different optical elements and corresponding countermeasures is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Throughout this paper, transmission of qubits in all Schemes Tj is performed along the same line after concatenation of a randomly prepared string of decoy qubits followed by permutation of qubits in the enlarged string. Subsequently, the error estimation on the transmitted decoy qubits provides an upper bound of the errors introduced during transmission on the remaining message qubits, which can be solely attributed to the disturbance caused due to an eavesdropping attempt for the sake of simplicity and attaining utmost security. The choice of decoy qubits could be the single-qubit states used in BB84 protocol or entangled states (see Sharma et al. (2016) for a detailed discussion).

References

  • Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)

    Article  ADS  Google Scholar 

  • Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum Inf. Process. 17, 161 (2018)

  • Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A 35, L407–L413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. International Conference on Computer System and Signal Processing, IEEE 1984, 175–179 (1984)

  • Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.J., Nolan, D.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    Article  ADS  Google Scholar 

  • Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96, 062335 (2017)

    Article  ADS  Google Scholar 

  • Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  MATH  Google Scholar 

  • Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)

    Article  ADS  Google Scholar 

  • Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  • Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  • Diamanti, E., Lo, H. K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. npj Quantum Inf bf, 16025 (2016)

  • Ding, Y., Bacco, D., Dalgaard, K., Cai, X., Zhou, X., Rottwitt, K. , Oxenløwe, L. K.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017)

  • Duplinskiy, A., Ustimchik, V., Kanapin, A., Kurochkin, V., Kurochkin, Y.: Low loss QKD optical scheme for fast polarization encoding. Opt. Express 25, 28886–28897 (2017)

    Article  ADS  Google Scholar 

  • Gisin, N., Brunner, N.: Quantum cryptography with and without entanglement. arXiv preprint quant-ph/0312011 (2003)

  • Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

  • Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  • Gleim, A., Egorov, V., Nazarov, Y.V., Smirnov, S.V., Chistyakov, V.V., Bannik, O.I., Anisimov, A.A., Kynev, S.M., Ivanova, A.E., Collins, R.J., Kozlov, S.A.: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 24, 2619–2633 (2016)

    Article  ADS  Google Scholar 

  • Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)

  • Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)

    Article  ADS  Google Scholar 

  • Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

  • Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38, 4494–4497 (2013)

    Article  ADS  Google Scholar 

  • Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

  • Huang, A., Navarrete, Á, Sun, S. H., Chaiwongkhot, P., Curty, M. Makarov, V.: Laser-seeding attack in quantum key distribution. Phys. Rev. Appl. 12, 064043 (2019)

  • Id quantique. https://www.idquantique.com/

  • Kak, S.: A three-stage quantum cryptography protocol. Found. Phys. Lett. 19, 293–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, I., Heim, B., Neuzner, A., Marquardt, C.: Satellite-based QKD. Opt. Photonics News 29, 26–33 (2018)

    Article  ADS  Google Scholar 

  • Kiktenko, E.O., Pozhar, N.O., Duplinskiy, A.V.E., Kanapin, A.A., Sokolov, A.S., Vorobey, S.S., Miller, A.V.E., Ustimchik, V.E.E., Anufriev, M.N., Trushechkin, A.T., Yunusov, R.R.: Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron. 47, 798–802 (2017)

    Article  ADS  Google Scholar 

  • Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  • Koashi, M.: Efficient quantum key distribution with practical sources and detectors. arXiv preprint quant-ph/0609180 (2006)

  • Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 9, 163 (2015)

    Article  ADS  Google Scholar 

  • Lee, M.S., Woo, M.K., Jung, J., Kim, Y.S., Han, S.W., Moon, S.: Free-space QKD system hacking by wavelength control using an external laser. Opt. Express 25, 11124–11131 (2017)

    Article  ADS  Google Scholar 

  • Li, H.W., Wang, S., Huang, J.Z., Chen, W., Yin, Z.Q., Li, F.Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.C., Bao, W.S.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)

  • Liao, S.K., Cai, W.Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.G., Liu, W.Y., Li, Y.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018)

  • Liu, C.Q., Zhu, C.H., Wang, L.H., Zhang, L.X., Pei, C.X.: Polarization-encoding-based measurement-device-independent quantum key distribution with a single untrusted source. Chin. Phys. Lett. 33, 100301 (2016)

  • Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

  • Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

  • Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595–604 (2014)

    Article  ADS  Google Scholar 

  • Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, (2002)

  • Ma, C., Sacher, W.D., Tang, Z., Mikkelsen, J.C., Yang, Y., Xu, F., Thiessen, T., Lo, H.K., Poon, J.K.: Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016)

    Article  ADS  Google Scholar 

  • Magiq. https://www.magiqtech.com/

  • Muller, A., Zbinden, H., Gisin, N.: Underwater quantum coding. Nature 378, 449 (1995)

    Article  ADS  Google Scholar 

  • Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New J. Phys. 11, 085006 (2009)

  • Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)

    Article  Google Scholar 

  • Pan, D., Lin, Z., Wu, J., Sun, Z., Ruan, D., Yin, L., Long, G.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 8, 1522–1531 (2020)

    Article  Google Scholar 

  • Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton (2013)

    Book  MATH  Google Scholar 

  • Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L.: Advances in quantum cryptography. Adv. Opt. Photonics 12, 1012–1236 (2020)

    Article  ADS  Google Scholar 

  • Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)

  • Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999)

  • Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6, 1–127 (2008)

    Article  MATH  Google Scholar 

  • Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

  • Saxena, A., Thapliyal, K., Pathak, A.: Continuous variable controlled quantum dialogue and secure multiparty quantum computation. Int. J. Quantum Inf. 18, 2050009 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

  • Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)

    Article  ADS  MATH  Google Scholar 

  • Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  • Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H.: Chip-based quantum key distribution. Nat. Commu. 8, 13984 (2017)

    Article  ADS  Google Scholar 

  • Smania, M., Elhassan, A. M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. npj Quantum Inf. 2, 16010 (2016)

  • Soujaeff, A., Nishioka, T., Hasegawa, T., Takeuchi, S., Tsurumaru, T., Sasaki, K., Matsui, M.: Quantum key distribution at 1550 nm using a pulse heralded single photon source. Opt. Express 15, 726–734 (2007)

    Article  ADS  Google Scholar 

  • Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states. Quantum Inf. Process. 19, 371 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using Gaussian states. Quantum Inf. Process. 19, 132 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., Gray, S., Towery, C.R., Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, (2009)

  • Sun, P., Mazurenko, Y., Fainman, Y.: Long-distance frequency-division interferometer for communication and quantum cryptography. Opt. Lett. 20, 1062–1064 (1995)

    Article  ADS  Google Scholar 

  • Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  • Tang, J., Shi, L., Wei, J.: Controlled quantum key agreement based on maximally three-qubit entangled states. Mod. Phys. Lett. B 34, 2050201 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Thapliyal, K., Pathak, A.: Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol. Quantum Inf. Process. 17, 229 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Thapliyal, K., Pathak, A.: Quantum e-commerce: a comparative study of possible protocols for online shopping and other tasks related to e-commerce. Quantum Inf. Process. 18, 191 (2019)

    Article  ADS  Google Scholar 

  • Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15, 1750007 (2017)

    Article  MATH  Google Scholar 

  • Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16, 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.F., Guo, G.C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-Poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

  • Wang, J., Qin, X., Jiang, Y., Wang, X., Chen, L., Zhao, F., Wei, Z., Zhang, Z.: Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units. Opt. Express 24, 8302–8309 (2016)

    Article  ADS  Google Scholar 

  • Wu, J., Lin, Z., Yin, L., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, (2019)

  • Xu, F., Wei, K., Sajeed, S., Kaiser, S., Sun, S., Tang, Z., Qian, L., Makarov, V., Lo, H.K.: Experimental quantum key distribution with source flaws. Phys. Rev. A 92, (2015)

  • Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, S.L., Shu, R.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020)

    Article  ADS  Google Scholar 

  • Zhang, Z., Chen, C., Zhuang, Q., Heyes, J. E., Wong, F. N., Shapiro, J. H.: Experimental quantum key distribution at 1.3 Gbit/s secret-key rate over a 10-dB-loss channel. In: CLEO: QELS Fundamental Science FTu3G–5 Optical Society of America, pp.1-2 (2018)

  • Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, (2017)

  • Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006)

    Article  Google Scholar 

  • Zhang, C.H., Zhang, C.M., Guo, G.C., Wang, Q.: Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources. Opt. Express 26, 4219–4229 (2018)

    Article  ADS  Google Scholar 

  • Zhao, Y., Qi, B., Ma, X., Lo, H.K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

  • Zhou, Y. y., Zhou, X. j., Su, B. b.: A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectron Lett. 12, 148–151 (2016)

  • Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  • Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

AP acknowledges the support from Interdisciplinary Cyber Physical Systems (ICPS) programme of the Department of Science and Technology (DST), India, Grant No.: DST/ICPS/QuST/Theme-1/2019/14. KT acknowledges the financial support from the Operational Programme Research, Development and Education - European Regional Development Fund project no. CZ.02.1.01/0.0/0.0/16_019/0000754 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Thapliyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodia, M., Thapliyal, K. & Pathak, A. Optical designs for realization of a set of schemes for quantum cryptography. Opt Quant Electron 53, 206 (2021). https://doi.org/10.1007/s11082-021-02819-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02819-w

Keywords

Navigation