Skip to main content
Log in

Formation of nanoparticles from thin silver films under a liquid layer by single-shot nanosecond laser action

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, we show that Ag thin films (10 nm thickness) deposited on a glass substrate can be transformed into nanoparticles by laser-induced dewetting using a pulsed Nd:YAG laser operated at λ = 532 nm. The film could be entirely dewetted by a single pulse, and the required fluence was about 100 mJ/cm2. The properties of fabricated nanostructures are investigated by scanning electron microscopy and optical spectroscopy. The size distribution of produced particles and the absorption spectra of dewetted films were found. This process provides a facile and scalable method of forming metal nanoparticle arrays for plasmonic and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bischof, J., Scherer, D., Herminghaus, S., Leiderer, P.: Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536–1539 (1996)

    Article  ADS  Google Scholar 

  • Cheng, J.Y., Mayes, A.M., Ross, C.A.: Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 3, 823–828 (2004)

    Article  ADS  Google Scholar 

  • Henzie, J., Lee, J., Lee, M.H., Hasan, W., Odom, T.W.: Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147–165 (2009)

    Article  ADS  Google Scholar 

  • Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S.: Spinodal dewetting in liquid crystal and liquid metal films. Science (80-) 282, 916–919 (1998)

    Article  ADS  Google Scholar 

  • Ito, Y., Jain, H., Williams, D.B.: Electron-beam induced growth of Cu nanoparticles in silica glass matrix. Appl. Phys. Lett. 75, 3793–3795 (1999)

    Article  ADS  Google Scholar 

  • Krishna, H., Shirato, N., Favazza, C., Kalyanaraman, R.: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136–8143 (2009). https://doi.org/10.1039/b906281p

    Article  Google Scholar 

  • Krishna, H., Sachan, R., Strader, J., Favazza, C., Khenner, M., Kalyanaraman, R.: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010). https://doi.org/10.1088/0957-4484/21/15/155601

    Article  ADS  Google Scholar 

  • Le Bris, A., Maloum, F., Teisseire, J., Sorin, F.: Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting. Appl. Phys. Lett. 105, 203102 (2014). https://doi.org/10.1063/1.4901715

    Article  Google Scholar 

  • Lide, D.R.: CRC Handbook of Chemistry and Physics, 84th edn. Taylor & Francis, Boca Raton (2003)

    Google Scholar 

  • Longstreth-Spoor, L., Trice, J., Garcia, H., Zhang, C., Kalyanaraman, R.: Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si. J. Phys. D Appl. Phys. 39, 5149–5159 (2006)

    Article  ADS  Google Scholar 

  • Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    Article  ADS  Google Scholar 

  • Malasi, A., Kalyanaraman, R., Garcia, H.: From Mie to Fresnel through effective medium approximation with multipole contributions. J. Opt. 16, 65001 (2014)

    Article  Google Scholar 

  • Metev, S.M., Veiko, V.P.: Laser-Assisted Microtechnology. Springer, Berlin (2013)

    Google Scholar 

  • Otanicar, T.P., DeJarnette, D., Hewakuruppu, Y., Taylor, R.A.: Filtering light with nanoparticles: a review of optically selective particles and applications. Adv. Opt. Photonics. 8, 541–585 (2016). https://doi.org/10.1364/AOP.8.000541

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids, vol. 1. Elsevier Science, Amsterdam (1985)

    Google Scholar 

  • Rack, P.D., Guan, Y., Fowlkes, J.D., Melechko, A.V., Simpson, M.L.: Pulsed laser dewetting of patterned thin metal films: a means of directed assembly. Appl. Phys. Lett. 92, 223108 (2008)

    Article  ADS  Google Scholar 

  • Ruffino, F., Grimaldi, M.G.: Controlled dewetting as fabrication and patterning strategy for metal nanostructures. Phys. Status Solidi Appl. Mater. Sci. 212, 1662–1684 (2015). https://doi.org/10.1002/pssa.201431755

    Article  ADS  Google Scholar 

  • Ruffino, F., Gentile, A., Zimbone, M., Piccitto, G., Reitano, R., Grimaldi, M.G.: Size-selected Au nanoparticles on FTO substrate: controlled synthesis by the Rayleigh–Taylor instability and optical properties. Superlatt. Microstruct. 100, 418–430 (2016). https://doi.org/10.1016/j.spmi.2016.09.047

    Article  ADS  Google Scholar 

  • Sancho-Parramon, J.: Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects. Nanotechnology 20, 235706 (2009)

    Article  ADS  Google Scholar 

  • Sharma, P., Liu, C.Y., Hsu, C.F., Liu, N.W., Wang, Y.L.: Ordered arrays of Ag nanoparticles grown by constrained self-organization. Appl. Phys. Lett. 89, 87–90 (2006). https://doi.org/10.1063/1.2355475

    Article  Google Scholar 

  • Sturm, J., Grosse, P., Theiss, W.: Effective dielectric functions of alkali halide composites and their spectral representation. Z. Phys. B Condens. Matter. 83, 361–365 (1991)

    Article  ADS  Google Scholar 

  • Theiß, W.: The use of effective medium theories in optical spectroscopy. In: Advances in Solid State Physics 33, pp. 149–176. Springer (1994)

  • Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., Kalyanaraman, R.: Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B. 75, 235439 (2007). https://doi.org/10.1103/PhysRevB.75.235439

    Article  ADS  Google Scholar 

  • Wang, D., Schaaf, P.: Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying. Phys. Status Solidi. 210, 1544–1551 (2013)

    Article  ADS  Google Scholar 

  • Wang, D., Ji, R., Schaaf, P.: Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates. Beilstein J. Nanotechnol. 2, 318–326 (2011). https://doi.org/10.3762/bjnano.2.37

    Article  Google Scholar 

  • Wenzel, T., Bosbach, J., Goldmann, A., Stietz, F., Träger, F.: Shaping nanoparticles and their optical spectra with photons. Appl. Phys. B 69, 513–517 (1999). https://doi.org/10.1007/s003400050845

    Article  ADS  Google Scholar 

  • Wi, J.-S., Son, J.G., Han, S.W., Lee, T.G.: Nanoparticles inside nanodishes for plasmon excitations. Appl. Phys. Lett. 107, 203102 (2015). https://doi.org/10.1063/1.4935860

    Article  ADS  Google Scholar 

  • Xie, R., Karim, A., Douglas, J.F., Han, C.C., Weiss, R.A.: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81, 1251–1254 (1998)

    Article  ADS  Google Scholar 

  • Yadavali, S., Kalyanaraman, R.: Nanomaterials synthesis by a novel phenomenon: the nanoscale Rayleigh–Taylor instability. AIP Adv. 4, 047116 (2014). https://doi.org/10.1063/1.4871482

    Article  ADS  Google Scholar 

  • Yang, S., Xu, F., Ostendorp, S., Wilde, G., Zhao, H., Lei, Y.: Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties. Adv. Funct. Mater. 21, 2446–2455 (2011a)

    Article  Google Scholar 

  • Yang, Y., Zhang, M.Y., Cheng, G.J.: Dense and uniform Au nanospheres on glass through confined nanosecond pulsed laser irradiation. Appl. Phys. Lett. 99, 091901 (2011b). https://doi.org/10.1063/1.3633123

    Article  ADS  Google Scholar 

  • Ye, J., Zuev, D., Makarov, S.: Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems. Int. Mater. Rev. 2018, 1–39 (2018)

    Google Scholar 

  • Zhang, D., Gökce, B., Barcikowski, S.: Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

    Article  Google Scholar 

  • Zhao, Y., Jiang, Y., Fang, Y.: Spectroscopy property of Ag nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65, 1003–1006 (2006). https://doi.org/10.1016/j.saa.2006.01.010

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Russian Foundation for Basic Research funded the studies of optical properties together with laser experiments according to Project No. 18-32-00705. Samples preparation and SEM studies were supported by the Russian Science Foundation (Project 19-79-10259). The reported study was done using the equipment of the Interdisciplinary Resource Center for Nanotechnology at St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ageev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies.

Guest edited by Tigran Vartanyan, Vadim Veiko, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakova, Y., Andreeva, Y., Sergeev, M. et al. Formation of nanoparticles from thin silver films under a liquid layer by single-shot nanosecond laser action. Opt Quant Electron 52, 97 (2020). https://doi.org/10.1007/s11082-020-2209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2209-x

Keywords

Navigation