Skip to main content
Log in

Highly sensitive magnetic field sensor based on mode coupling effect in microstructured optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A highly sensitive magnetic field sensor based on mode coupling effect in a microstructured optical fiber (MOF) was theoretically investigated by using the finite element method. Magnetic fluid with refractive index higher than silica was designed to be filled into one cladding air hole in MOF to form a defect core. The coupling wavelength between fiber core modes and defect core modes can be modulated by external magnetic field. Simulation results show that the measuring sensitivity of magnetic field and figure of merit reached 1620 pm/Oe, 0.081/Oe in x-polarized mode and 1790 pm/Oe, 0.045/Oe in y-polarized mode, respectively. Meanwhile, the intensity of magnetic field depicts a good linear relationship with the coupling wavelength for both orthogonal polarized directions in the range of 25–175.9 Oe. The performance of the designed magnetic field sensor can be improved by optimizing the structural parameters in MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear fiber optics. Sov. J. Quantum Electron. 160(18), 1–1 (2000)

    MATH  Google Scholar 

  • Buczynski, R., et al.: Highly birefringent soft glass rectangular photonic crystal fibers with elliptical holes. Appl. Phy. B. 99, 13–17 (2010)

    Article  ADS  Google Scholar 

  • Candiani, A., et al.: A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid. Opt. Express 18(24), 24654–24660 (2010)

    Article  ADS  Google Scholar 

  • Chen, H.L., et al.: A novel polarization splitter based on dual-core photonic crystal fiber with a liquid crystal modulation core. Photonics J. IEEE 6(4), 1–9 (2014)

    Article  Google Scholar 

  • Chen, Y.F., et al.: Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl. Phys. Lett. 82(20), 3481–3483 (2003)

    Article  ADS  Google Scholar 

  • Chen, L.X., Huang, X.G., Zhu, J.H., Li, G.C., Lan, S.: Fiber magnetic-field sensorbased on nanoparticle magnetic fluid and Fresnel reflection. Opt. Lett. 36, 2761–2763 (2011)

    Article  ADS  Google Scholar 

  • Chen, H., et al.: High sensitivity of temperature sensor based on ultracompact photonics crystal fibers. IEEE Photonics J. 6(6), 1–6 (2014)

    Google Scholar 

  • Chen, H., et al.: Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers. IEEE Photonics Technol. Lett. 27(7), 717–720 (2015)

    Article  ADS  Google Scholar 

  • De, M., Singh, V.K.: Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt. Laser Technol. 106, 61–68 (2018)

    Article  ADS  Google Scholar 

  • Di, Z., et al.: Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids. Appl. Phys. Lett. 89(21), 211106 (2006)

    Article  ADS  Google Scholar 

  • Gao, R., Jiang, Y.: Magnetic fluid-filled microhole in the collapsed region of a photonic crystal fiber for the measurement of a magnetic field. Opt. Lett. 38(16), 3181–3184 (2013)

    Article  ADS  Google Scholar 

  • Hong, C.Y., et al.: Control parameters for the tunable refractive index of magnetic fluid films. J. Appl. Phys. 94(6), 3849–3852 (2003)

    Article  ADS  Google Scholar 

  • Horng, H.E., et al.: Designing the refractive indices by using magnetic fluids. Appl. Phys. Lett. 82(15), 2434–2436 (2003)

    Article  ADS  Google Scholar 

  • Horng, H.E., et al.: Tunable optical switch using magnetic fluids. Appl. Phys. Lett. 85(23), 5592–5594 (2004)

    Article  ADS  Google Scholar 

  • Hunger, D., Deutsch, C., Barbour, R.J., Warburton, R.J., Reichel, J.: Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv. 2, 943–948 (2011)

    Google Scholar 

  • Li, J., et al.: Field modulation of light transmission through ferrofiuid film. Appl. Phys. Lett. 91(25), 253108 (2007)

    Article  ADS  Google Scholar 

  • Liu, T., et al.: Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids. Appl. Phys. Lett. 91(12), 121116 (2007)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S.G., Wang, X.: Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting. Sens. Actuators B Chem. 242, 949–955 (2016)

    Article  Google Scholar 

  • Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A (Phys) 123–124, 438–443 (2005)

    Article  Google Scholar 

  • Rinaldi, C., Chaves, A., Elborai, S.: Magnetic fluid rheology and flows. Curr. Opin. Colloid Interface Sci. 10, 141–157 (2005)

    Article  Google Scholar 

  • Russell, P.S.J.: Photonic crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Numerical modeling of photonic crystal fibers. J. Lightwave Technol. 23(11), 3580–3590 (2005)

    Article  ADS  Google Scholar 

  • Sherry, L.J., Chang, S.H., Schatz, G.C., Van Duyne, R.P., Wiley, B.J., Xia, Y.: Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5(10), 2034–2038 (2005)

    Article  ADS  Google Scholar 

  • Shliomis, M.I., Raikher, Y.L.: Experimental investigations of magnetic fluids. IEEE Trans. Magn. 16(2), 237–250 (1980)

    Article  ADS  Google Scholar 

  • Wang, Y., Liao, C.R., Wang, D.N.: Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt. Express 18, 18056–18060 (2010)

    Article  ADS  Google Scholar 

  • Yang, S.Y., Horng, H.E.: Structures, optical properties and potentially electrooptical applications of magnetic fluid films. J. Appl. Sci. Eng. 2(5), 85–93 (2002)

    Google Scholar 

  • Yusuf, N.A., Ramadan, A., Abu-Safia, H.: The wavelength and concentration dependence of the magneto-dielectric anisotropy effect in magnetic fluids determined from magneto-optical measurements. J. Magn. Magn. Mater. 184(3), 375–386 (1998)

    Article  ADS  Google Scholar 

  • Zhao, Y., et al.: Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Opt. Laser Technol. 44, 899–902 (2012)

    Article  ADS  Google Scholar 

  • Zu, P., et al.: High extinction ratio magneto-optical fiber modulator based on nanoparticle magnetic fluids. IEEE Photonics J. 4(4), 1140–1146 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Hebei Province,China (Grant Nos. F2017203110, F2017203193), the National Natural Science Foundation of China (Grant No. 61505175) and the China Scholarship Council (Grant No. 201908130229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling.

Guest edited by Alejandro Ortega Moñux, Rafael Godoy Rubio and Jiri Ctyroky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chen, H., Liu, Y. et al. Highly sensitive magnetic field sensor based on mode coupling effect in microstructured optical fibers. Opt Quant Electron 52, 133 (2020). https://doi.org/10.1007/s11082-020-2206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2206-0

Keywords

Navigation