Skip to main content
Log in

Phase-frequency jointly quantizing method for cost-effective all-optical analog-to-digital conversion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose for the first time a two-dimensional phase-frequency jointly quantizing method for cost-effective all-optical analog-to-digital conversion (ADC), both on power consumption and structure complexity. By fully harnessing the power-dependent phase and frequency shift of the probe and pump light, respectively, that simultaneously occurs during the cross-phase modulation process, the method is studied with an on-chip interferometer structure based on nonlinear silicon-organic hybrid slot waveguide. Simulation results show the 4-bit quantization resolution is achieved by using only one interferometer, where N interferometers should be used in the conventional methods with resolution of N-bit. The proposed method provides an efficient optical quantization technique for all-optical ADC, also opens a new mind for exploring advanced all-optical ADC techniques using multi-dimensional degrees of freedom of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic, New York (2013)

    MATH  Google Scholar 

  • Han, Y., Jalali, B.: Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightw. Technol. 21(12), 3085–3103 (2003)

    Article  ADS  Google Scholar 

  • Kang, Z., Zhang, X.T., Yuan, J.H., Sang, X.Z., Wu, Q., Farrell, G., Yu, C.X.: Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation. Opt. Express 22(18), 21441–21453 (2014a)

    Article  ADS  Google Scholar 

  • Kang, Z., Yuan, J.H., Zhang, X.T., Wu, Q., Sang, X.Z., Farrell, G., Yu, C.X., Li, F., Tam, H.Y., Wai, P.K.A.: CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide. Sci. Rep. 4, 7177 (2014b)

    Article  ADS  Google Scholar 

  • Kang, Z., Yuan, J.H., Zhang, X.T., Sang, X.Z., Wang, K.R., Wu, Q., Yan, B.B., Li, F., Zhou, X., Zhong, K.P., Zhou, G.Y., Yu, C.X., Farrell, G., Lu, C., Tam, H.Y., Wai, P.K.A.: On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide. Sci. Rep. 6, 19528 (2016)

    Article  ADS  Google Scholar 

  • Khilo, A., Spector, S.J., Grein, M.E., Nejadmalayeri, A.H., Holzwarth, C.W., Sander, M.Y., Dahlem, M.S., Peng, M.Y., Geis, M.W., DiLello, N.A.: Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20(4), 4454–4469 (2012)

    Article  ADS  Google Scholar 

  • Kim, J.W., Song, Y.J.: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon. 8(3), 465–540 (2016)

    Article  Google Scholar 

  • Li, Y.H., Zhu, K., Kang, Z., Ho, W.L., Davidson, R., Lu, C., Little, B.B., Chu, S.T.: CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion. Photon. Res. 7(10), 1200–1208 (2019)

    Article  Google Scholar 

  • Lukas, K., Toifl, T., Schmatz, M., Francese, P.A., Menolfi, C., Braendli, M., Kossel, M., Morf, T., Meyer A. T., Yusuf L.: A 90GS/s 8b 667mW 64×interleaved SAR ADC in 32nm digital SOI CMOS. In: Proceedings of the 2014 International Solid-State Circuits Conference (ISSCC), San Francisco, California, February 9–13 (2014)

  • Mahjoubfar, A., Churkin, D.V., Barland, S., Broderick, N., Turitsyn, S.K., Jalali, B.: Time stretch and its applications. Nat. Photon. 11, 341–351 (2017)

    Article  ADS  Google Scholar 

  • Miyoshi, Y., Takagi, S., Namiki, S., Kitayama, K.I.: Multiperiod PM-NOLM with dynamic counter-propagating effects compensation for 5-bit all-optical analog-to-digital conversion and its performance evaluations. J. Lightw. Technol. 28(4), 415–422 (2010)

    Article  ADS  Google Scholar 

  • Miyoshi, Y., Namiki, S., Kitayama, K.I.: Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs. IEEE J. Sel. Top. Quantum Electron. 18(2), 779–784 (2012)

    Article  ADS  Google Scholar 

  • Nishitani, T., Konishi, T., Itoh, K.: Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression. IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008)

    Article  ADS  Google Scholar 

  • Oda, S., Maruta, A.: Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber. IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006)

    Article  ADS  Google Scholar 

  • Schulein, R.T., Grein, M.E., Yoon, J.U., Lennon, D.M., Frolov, S.: High speed analog-to-digital conversion with silicon photonics. In: Proceedings of SPIE, the International Society for Optical Engineering, p. 7220 (2009)

  • Tavousi, A., Birjandi, M.A.M.: Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators. Superlattices Microstruct. 114, 23–31 (2018)

    Article  ADS  Google Scholar 

  • Tavousi, A., Birjandi, M.A.M., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E 83, 101–106 (2016)

    Article  ADS  Google Scholar 

  • Tian, Y., Qiu, J.F., Huang, Z.L., Qiao, Y.Y., Dong, Z.L., Wu, J.: On-chip integratable all-optical quantizer using cascaded step-size MMI. Opt. Express 26(3), 2453–2461 (2018)

    Article  ADS  Google Scholar 

  • Valley, G.C.: Photonic analog-to-digital converters. Opt. Express 15(5), 1955–1982 (2007)

    Article  ADS  Google Scholar 

  • Walden, R.H.: Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)

    Article  Google Scholar 

  • Walden, R.H.: Analog-to-digital conversion in the early twenty-first century. Wiley Encyclopedia of Computer Science and Engineering. American Cancer Society (2008)

  • Yang, S.N., He, H.X., Chi, H., Zeng, R.: Photonic quantization and encoding scheme with improved bit resolution based on waveform folding. Opt. Express 27(24), 35565–35573 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Nanjing College of Information Technology (Grant Number: YK20190502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Kang, Z. Phase-frequency jointly quantizing method for cost-effective all-optical analog-to-digital conversion. Opt Quant Electron 53, 65 (2021). https://doi.org/10.1007/s11082-020-02664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02664-3

Keywords

Navigation