Skip to main content
Log in

Propagation properties of finite cosh-Airy beams through an Airy Transform Optical System

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have derived the analytical expression for a diffracted finite cosh-Airy beam by an Airy Transform Optical System (ATOS). The obtained output field is expressed as a superposition of finite Airy modes with different weights and decay factors. Numerical examples were performed to illustrate the influence of the scale factor, the parameter associated with cosh-function, in addition to the parameters of the finite Airy mode and the parameters of the ATOS on the generated beam. It is shown that the resulting beam possesses more manipulation degrees of freedom than that corresponding to finite Airy or Gaussian-Airy beams. This investigation is also extended to the cos-Airy beams. The obtained results are consistent with those previously obtained for fundamental Gaussian and Airy beams, and the present study provides a more generalized investigation on the conversion of related Airy beams by an ATOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumgartl, J., Mazilu, M., Dholakia, K.: Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2(11), 675–678 (2008)

    Article  ADS  Google Scholar 

  • Berry, M.V., Balazs, N.L.: Nonspreading wave packets. Am. J. Phys. 47(3), 264–267 (1979)

    Article  ADS  Google Scholar 

  • Broky, J., Siviloglou, G.A., Dogariu, A., Christodoulides, D.N.: Self-healing properties of optical Airy beams. Opt. Expr. 16, 12880–12891 (2008)

    Article  ADS  Google Scholar 

  • Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Davis, J.A., McNamara, D.E., Cottrel, D.M.: Analysis of fractional Hilbert transform. Appl. Opt. 37, 6911–6913 (1998)

    Article  ADS  Google Scholar 

  • Davis, J.A., McNamara, D.E., Cottrel, D.M., Campos, J.: Image processing with radial Hilbert transform, theory and experiments. Opt. Lett. 25, 99–101 (2000)

    Article  ADS  Google Scholar 

  • El Halba, E.M., Khouilid, M., Boustimi, M., Belafhal, A.: Generation of generalized spiraling Bessel beams by a curved fork-shaped hologram with Bessel–Gaussian laser beams modulated by a Bessel grating. Optik 154, 331–343 (2018)

    Article  ADS  Google Scholar 

  • Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A., Arie, A.: Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3(7), 395–398 (2009)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Hricha, Z., Belafhal, A.: Novel finite Airy array beams generated from Gaussian array beams illuminating an optical Airy transform system. Prog. Electromagn. Res. M 49, 41–50 (2016)

    Article  Google Scholar 

  • Ez-zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Converstion of the hyperbolic-cosine Gaussian beam to a novel finite Airy-related beam using an optical Airy transform system. Optik 171, 501–506 (2018)

    Article  ADS  Google Scholar 

  • Goodman, J.W.: Introduction to Fourier Optics. Roberts & Co., Greenwood Village (2005)

    Google Scholar 

  • Jia, S., Lee, J., Fleischer, J.W., Siviloglou, G.A., Christodoulides, D.N.: Diffusion-trapped Airy beams in photorefractive media. Phys. Rev. Lett. 104(25), 253904–253907 (2010)

    Article  ADS  Google Scholar 

  • Jiang, Y., Huang, K., Lu, X.: The optical Airy transform and its application in generating and controlling the Airy beam. Opt. Commun. 285, 4840–4843 (2012a)

    Article  ADS  Google Scholar 

  • Jiang, Y., Huang, K., Lu, X.: Airy related beam generated from flat-topped Gaussian beams. J. Opt. Soc. Am. A 29(7), 1412–1416 (2012b)

    Article  ADS  Google Scholar 

  • Li, H.H., Wang, J.G., Tang, M.M., Li, X.Z.: Propagation properties of cosh-Airy beams. J. Mod. Opt. 65(3), 314–320 (2018a)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, H., Wang, J., Tang, M., Cao, J., Li, X.: Phase transition of cosh-Airy beams in inhomogeneous media. Opt. Commun. 427, 147–151 (2018b)

    Article  ADS  Google Scholar 

  • Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Relativistic self-focusing of finite Airy Gaussian beams in collisionless plasma using the Wentzel–Krammers–Brillouin approximation. Optik 154, 58–66 (2018a)

    Article  ADS  Google Scholar 

  • Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Effect of light absorption and temperature on self-focusing of finite Airy Gaussian beams in plasma with relativistic and ponderomotive regime. Quantum Electron. 50, 216–232 (2018b)

    Article  Google Scholar 

  • Polynkin, P., Kolesik, M., Moloney, J.V., Siviloglou, G.A., Christodoulides, D.N.: Curved plasma channel generation using ultra intense Airy beams. Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  • Rose, P., Diebel, F., Boguslawski, M., Denz, C.: Airy beam induced optical routing. Appl. Phys. Lett. 102, 101101–101103 (2013)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite Airy beams. Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901–213904 (2007)

    Article  ADS  Google Scholar 

  • Vallée, O., Soares, M.: Airy Functions and Their Applications to Physics. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  • Widder, D.V.: The Airy transform. Am. Math. Mon. 86, 271–277 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Transformation of double-half inverse Gaussian hollow beams into superposition of finite Airy beams using an optical Airy transform. Opt. Quantum Electron. 51, 64–75 (2019a)

    Article  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Generation of spiraling Bessel beams from Dark/Antidark Gaussian beams diffracted by a curved fork-shaped hologram. Opt. Quantum Electron. 51, 242–254 (2019b)

    Article  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of Dark and Antidark Gaussian beams in a turbulent atmosphere. Opt. Quantum Electron. 51, 255–266 (2019c)

    Article  Google Scholar 

  • Zhou, G., Chu, X., Chen, R., Zhou, Y.: Self-healing properties of cosh-Airy beams. Laser Phys. 29, 025001 (2019a)

    Article  ADS  Google Scholar 

  • Zhou, G., Chen, R., Chu, X.: Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis. Opt. Laser Technol. 116, 72–82 (2019b)

    Article  ADS  Google Scholar 

  • Zhou, Y., Xu, Y., Zhou, G.: Beam propagation factor of cosh-Airy beams. Appl. Sci. 9(9), 1817–1826 (2019c)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaalou, M., Hricha, Z. & Belafhal, A. Propagation properties of finite cosh-Airy beams through an Airy Transform Optical System. Opt Quant Electron 51, 356 (2019). https://doi.org/10.1007/s11082-019-2075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2075-6

Keywords

Navigation