Skip to main content
Log in

Morphology, UV–visible and ellipsometric studies of sodium lithium orthovanadate

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Sodium lithium orthovanadates were prepared by the classic ceramic method technique. Structure, phase purity, composition, and morphology were characterized by X-ray powder diffraction, infrared spectroscopy, energy dispersive spectroscopy, scanning-electron microscopy and atomic force microscopy. The optical properties of NaxLi1−xCdVO4 (x = 0.5, 1) compounds prepared were recorded at room temperature using ultra-visible and ellipsometric spectroscopies in the spectral range (200–800) nm. The average reflectance of the pellets showed high reflectivity (over 80%) in the visible spectrum. The UV–Vis absorption bands are assigned to the charge transfer from the oxygen ligands to the central vanadium atom inside the [VO4]3− groups in the orthovanadate compounds. The optical band gaps Eg of both samples are evaluated using Kubelka–Munk function. The analysis of the data revealed the existence of optical allowed direct transition for NaxLi1−xCdVO4 (x = 0.5, 1). Spectroscopic ellipsometry measurements have been performed on NaxLi1−xCdVO4 (x = 0.5, 1) specimens and their optical properties were analyzed using the Cauchy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Biswas, P., Kumar, V., Agarwal, G., Ntwaeaborwa, O.M., Swart, H.C.: NaSrVO4: Sm3+—an n-UV convertible phosphor to fill the quantum efficiency gap for LED applications. Ceram. Int. 42, 2317–2323 (2016)

    Article  Google Scholar 

  • Enneffati, M., Louati, B., Guidara, K.: Synthesis, refinement of the structure, and AC conductivity behavior of sodium lithium orthonavadates. Ionics 23, 1115–1129 (2017)

    Article  Google Scholar 

  • Errandonea, D., Gomis, O., Domene, B.G., Porres, J.P., Katari, V., Achary, S.N., Tyagi, A.K., Popesc, C.: New polymorph of InVO4: a high-pressure structure with six-coordinated vanadium. Inorg. Chem. 52, 12790–12798 (2013)

    Article  Google Scholar 

  • Escobarn, M.E., Baran, E.J.: Kraftkonstanten des VO4 3−—Ions im Zirkon-Gitter [1]/force constants of the VO4 3− Ion in the Zircon Lattice. Z. Naturforsch. A 35a, 1110–1111 (1980)

    Article  ADS  Google Scholar 

  • Forst, R.L., Xi, Y., Lopez, A., Correa, L., Scholz, R.: The molecular structure of the vanadate mineral mottramite [PbCu (VO4)(OH)] from Tsumeb, Namibia–A vibrational spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 252–256 (2014)

    Article  ADS  Google Scholar 

  • Frost, R.L., Williams, P.A., Kloprogge, J.T., Leverett, P.: Raman spectroscopy of basic copper (II) and some complex copper (II) sulfate minerals: implications for hydrogen bonding. Raman Spectrosc. 32, 906–911 (2001)

    Article  ADS  Google Scholar 

  • Frost, R.L., Crane, M., Williams, P.A., Kloprogge, J.T.: Isomorphic substitution in vanadinite [Pb5(VO4)3Cl]—a Raman spectroscopic study. J. Raman Spectrosc. 34, 214–220 (2003)

    Article  ADS  Google Scholar 

  • Frost, R.L., Henry, D.A., Weier, M.L., Martens, W.: Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite. J. Raman Spectrosc. 37, 722–732 (2006)

    Article  ADS  Google Scholar 

  • Grandhe, B.K., Ramaprabhu, S., Buddhudu, S., Sivaiah, K., Bandi, V.R., Jang, K.: Spectral characterization of novel LiZnVO4 phosphor. Opt. Commun. 285, 1194–1198 (2012)

    Article  ADS  Google Scholar 

  • Gupta, S., Singh, K.: Structural and optical properties of melt quenched barium doped bismuth vanadate. Phys. B 431, 89–93 (2013)

    Article  ADS  Google Scholar 

  • Huang, J., Chen, D.: Luminescence properties of a new orange-emitting phosphor. Appl. Phys. A 102, 239–243 (2011)

    Article  ADS  Google Scholar 

  • Kara-Ushanov, VYu., Shul’gin, B.V., Fotiev, A.A., Gavrilov, F.F., Smirnov, G.G.: Luminescence of vanadium garnets. Izv. Akad. Nauk SSSR Ser. Fiz. 38, 1210–1212 (1974)

    Google Scholar 

  • Khodos, M.Ya., Shul’gin, B.V., Gavrilov, F.F., Fotiev, A.A., Lioznyanskii, V.M.: Luminescence of VO4 3− ions in rare earth orthovanadates. J. Appl. Spectrosc. 16, 1023–1028 (1972)

    Article  Google Scholar 

  • Kulshreshtha, C., Sharma, A.K., Sohn, K.S.: Effect of local structures on the luminescence of Li2 (Sr, Ca, Ba) SiO4: Eu2+. J. Electrochem. Soc. 156, 52–56 (2009a)

    Article  Google Scholar 

  • Kulshreshtha, C., Kwak, J.H., Park, Y.J., Sohn, K.S.: Photoluminescent and decay behaviors of Mn2+ and Ce3+ coactivated MgSiN2phosphors for use in light-emitting-diode applications. Opt. Lett. 34, 794–796 (2009b)

    Article  ADS  Google Scholar 

  • Liu, J.B., Wang, H., Wang, S., Yan, H.: Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng., B 104, 36–39 (2003)

    Article  Google Scholar 

  • Moh, D.E.: Electronic process in non-crystallinematerial, 2nd edn. Universe Press, Oxford (1979)

    Google Scholar 

  • Moskvin, A.S., Khodos, M.Ya., Shul’gin, B.V.: Concentration and temperature luminescence characteristics of YVO4–Eu3+. Zhurnal Prikladnoj Spektroskopii 18, 54–58 (1973)

    Google Scholar 

  • Naciri, A.E.: Spectroscopic ellipsometry conventional and generalized aniso-tropic media: application to the study of optical properties of mercuric iodide (HgI2) (PhD thesis), Paul Verlaine University, Metz (1999)

  • Nakajima, T., Isobe, M., Tsuchiya, T., Ueda, Y., Manabe, T.: Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra. J. Phys. Chem. C 114, 5160–5167 (2010)

    Article  Google Scholar 

  • Paques-Ledent, MTh: Isomorphism of HT-NaCaAsO4 and HT-AgCaAsO4: new structural data and vibrational study. J. Inorg. Nucl. Chem. 38, 215–220 (1976)

    Article  Google Scholar 

  • Pu, Y., Huang, Y., Tsuboi, T., Cheng, H., Seo, H.J.: Intrinsic [VO4]3− emission of cesium vanadate Cs5V3O10. RSC Adv. 00, 1–3 (2012)

    Google Scholar 

  • Rasheed, M., Barillé, R.: Room temperature deposition of ZnO and Al: ZnO ultrathin films on glass and PET substrates by DC sputtering technique. Optical and Quantum Electronics 49(190), 2–14 (2017a)

    Google Scholar 

  • Rasheed, M., Barillé, R.: Optical constants of DC sputtering derived ITO, TiO2 and TiO2: Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices. J. Non-Cryst. Solids 476, 1–14 (2017b)

    Article  ADS  Google Scholar 

  • Rasheed, M., Barillé, R.: Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics. J. Alloys Compd. 728, 1186–1198 (2017c)

    Article  Google Scholar 

  • Ronde, H.: The position of the VO4 3− charge-transfer transition as a function of the V–O distance. Chem. Phys. Lett. 50, 282–283 (1977)

    Article  ADS  Google Scholar 

  • Ronde, H., Blasse, G.: The nature of the electronic transitions of the vanadate group. J. Inorg. Nucl. Chem. 40, 215–219 (1978)

    Article  Google Scholar 

  • Ropp, R.C.: Spectra of some rare earth vanadates. J. Electrochem. Soc. 115, 940–945 (1968)

    Article  Google Scholar 

  • Shul’gin, B.V., Kordyukov, N.I., Gavrilov, F.F., Fotiev, A.A., Kara-Ushanov, VYu.: Luminescence of orthovanadates NaMVO4. I. Russ. Phys. J. 15, 1584–1587 (1972)

    Google Scholar 

  • Shyichuk, A.A., Lis, S.: Photoluminescence properties of nanosized strontium-yttrium borate phosphor Sr3Y2(BO3)4:Eu3+ obtained by the sol–gel Pechini method. J. Rare Earths 29, 1161–1165 (2011)

    Article  Google Scholar 

  • Sohn, K.S., Seo, S.Y., Park, H.D.: Search for long phosphorescence materials by combinatorial chemistry method. Electrochem. Solid States Lett. 4, 26–29 (2001)

    Article  Google Scholar 

  • Sohn, K.S., Lee, J.M., Shin, N.: A search for new red phosphors using a computational evolutionary optimization process. Adv. Mater. 15, 2081–2084 (2003)

    Article  Google Scholar 

  • Sohn, K.S., Park, D.H., Cho, S.H., Kim, B.I., Woo, S.I.: Genetic algorithm − assisted combinatorial search for a new green phosphor for use in tricolor white LEDs. J. Comb. Chem. 8, 44–49 (2006)

    Article  Google Scholar 

  • Wu, X., Dong, L.: Morphological control and luminescent properties of YVO4: Eu nanocrystals. J. Phys. Chem. B 110, 15791–15796 (2006)

    Article  Google Scholar 

  • Yakuphanoglu, F., Arslan, M., Kucukislamoglu, M., Zengin, M.: Temperature dependence of the optical band gap and refractive index of poly (ethylene terepthalate) oligomer–DDQ complex thin film. Sol. Energy 79, 96–100 (2005)

    Article  ADS  Google Scholar 

  • Zhang, H., Fu, X., Niu, S., Sun, G., Xin, Q.: Synthesis and luminescent properties of nanosized YVO4: Ln (Ln = Sm, Dy). J. Alloys Compd. 457, 61–65 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Enneffati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enneffati, M., Rasheed, M., Louati, B. et al. Morphology, UV–visible and ellipsometric studies of sodium lithium orthovanadate. Opt Quant Electron 51, 299 (2019). https://doi.org/10.1007/s11082-019-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2015-5

Keywords

Navigation