Skip to main content
Log in

Resonant peak splitting in finite periodic superlattices with an unit cell of two barriers and two wells on monolayer graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The general expressions for transmission probability and resonant peaks in one-dimensional N-periods graphene superlattice with unit cell of two barriers and two wells are analytically derived, and two types of resonant peaks are obtained: (1) the periodicity induced resonant peaks splitting of (N − 1)-fold as N increases; and (2) the resonant peak through a unit cell unchanged as N varies. As the two-barriers in unit cell become asymmetric, the resonance transmission probability of unit cell becomes imperfect (T1 < 1), which drops quickly with the unit asymmetry increases. Thus, the unit cell related resonant peak could only be observed in superlattices with less unit cell asymmetry of a few of period numbers. With the period increases, the unit related resonant peak disappears and only periodicity induced (N − 1)-fold splitting remains. The splitting rule is further confirmed by the conductance and noise versus the incident energy and the misunderstandings in publication domain is cleared up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbier, M., Vasilopoulos, P., Peeters, F.M.: Extra Dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010)

    Article  ADS  Google Scholar 

  • Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  ADS  Google Scholar 

  • Esposito, S.: Multibarrier tunneling. Phys. Rev. E 67, 016609–016616 (2003)

    Article  ADS  Google Scholar 

  • Guo, Y., Gu, B.L., Li, Z.Q., Yu, J.Z., Kawazoe, Y.: Resonance splitting effect and wave-vector filtering effect in magnetic superlattices. J. Appl. Phys. 83, 4545–4547 (1998a)

    Article  ADS  Google Scholar 

  • Guo, Y., Gu, B.L., Li, Z.Q., Sun, Q., Kawazoe, Y.: Resonance splitting effect in semiconductor superlattices. Eur. Phys. J. B 3, 257–261 (1998b)

    Article  ADS  Google Scholar 

  • Huo, Q.H., Wang, R.Z., Yan, H.: Electron transport through magnetic superlattices with asymmetric double-barrier units in graphene. Chin. Phys. Lett. 29, 077307 (2012a)

    Article  ADS  Google Scholar 

  • Huo, Q.H., Wang, R.Z., Yan, H.: Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices. Appl. Phys. Lett. 101, 152404 (2012b)

    Article  ADS  Google Scholar 

  • Kamal, A., Choubabi, E.B., Jellal, A.: Band structures of symmetrical graphene superlattice with cells of three regions. Eur. Phys. J. B 91, 91 (2018)

    Article  ADS  Google Scholar 

  • Kuiri, M., Gupta, G.K., Ronen, Y., Das, T., Das, A.: Large Landau-level splitting in a tunable one-dimensional graphene superlattice probed by magnetocapacitance measurements. Phys. Rev. B 98, 035418 (2018)

    Article  ADS  Google Scholar 

  • Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chin. Phys. B 20, 047302 (2011)

    Article  ADS  Google Scholar 

  • Liu, X.-W., Stamp, A.P.: Resonance splitting effect in multibarrier tunneling. Phys. Rev. B 47(24), 16605–16607 (1993)

    Article  ADS  Google Scholar 

  • Liu, X.-W., Stamp, A.P.: Resonant tunneling and resonance splitting: the inherent properties of superlattices. Phys. Rev. B 50(3), 1588–1594 (1994)

    Article  ADS  Google Scholar 

  • Lu, W.T., Wu, Y.L., Ye, C.Z., Jiang, H., Li, W.: Resonant peak splitting through magnetic Kronig-Penney superlattices in graphene. Phys. B 407, 4735–4737 (2012a)

    Article  ADS  Google Scholar 

  • Lu, W.T., Li, W., Wang, Y.L., Ye, C.Z., Jiang, H.: Resonance splitting effect through magnetic superlattices in graphene. J. Appl. Phys. 112, 083712 (2012b)

    Article  ADS  Google Scholar 

  • Lu, W.T., Xu, C.T., Ye, C.Z., Jiang, H., Pan, H.Z., Wang, Y.L.: Electron tunneling of graphene modulated by realistic magnetic barriers. Phys. Lett. A 379, 1906–1911 (2015)

    Article  ADS  Google Scholar 

  • Peeters, F.M., Vasilopoulos, P.: New method of controlling the gaps between the minibands of a superlattice. Appl. Phys. Lett. 55, 1106–1108 (1989)

    Article  ADS  Google Scholar 

  • Pereyra, P., Castillo, E.: Theory of finite periodic systems: general expressions and various simple and illustrative examples. Phys. Rev. B 65(20), 205120 (2002)

    Article  ADS  Google Scholar 

  • Pham, C.H., Nguyen, V.L.: Tunneling through finite graphene superlattices: resonance splitting effect. J. Phys. Condens. Matter 27(9), 095302 (2015)

    Article  ADS  Google Scholar 

  • Sprung, D.W.L., Vanderspek, L.W.A., van Dijk, W., Martorell, J., Pacher, C.: Biperiodic superlattices and the transparent state. Phys. Rev. B 77, 035333 (2008)

    Article  ADS  Google Scholar 

  • Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)

    Article  ADS  Google Scholar 

  • Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006)

    Article  ADS  Google Scholar 

  • Vasilopoulos, P., Peeters, F.M., Aitelhabti, D.: Quantum tunability of superlattice minibands. Phys. Rev. B 41, 10021–10027 (1990)

    Article  ADS  Google Scholar 

  • Vezzetti, D.J., Cahay, M.: Transmission resonances in finite, repeated structures. J. Phys. D 19(4), L53–L55 (1986)

    Article  ADS  Google Scholar 

  • Wang, R.Z., Yan, X.H.: Resonant peak splitting for ballistic conductance in two-dimensional electron gas under electromagnetic modulation. Chin. Phys. Lett. 17, 598–600 (2000)

    Article  ADS  Google Scholar 

  • Wang, L.Y., Xu, H.Z., Wang, H.L., Pan, H., Zhang, Y.P., Zhang, G.L.: Conductance spin-polarization filter in monolayer graphene with combined magneto-electric modulation. Physic E 61, 185–190 (2014)

    Article  ADS  Google Scholar 

  • Wu, Q.S., Zhang, S.N., Yang, S.J.: Transport of the graphene electrons through a magnetic superlattice. J. Phys. Condens. Matter 20, 485210 (2008)

    Article  Google Scholar 

  • Xu, Y., He, Y., Yang, Y.F.: Resonant peak splitting in graphene superlattices with one-dimensional periodic potentials. Appl. Phys. A 115, 721–729 (2014)

    Article  ADS  Google Scholar 

  • Xu, H.Z., Feng, S., Zhang, Y.P., Wang, J.L., Zhang, S.C.: Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene. Opt. Quant. Electron. 49, 250 (2017)

    Article  Google Scholar 

  • Yamamoto, H., Kanie, Y., Sano, H., Taniguchi, K.: Resonant tunneling with mass variation in rectangular n‐fold barrier structures. Phys. Stat. Sol. B169, K17–K21 (1992)

    Article  ADS  Google Scholar 

  • Zeng, Z.Y., Zhang, L.D.: Resonance split of ballistic conductance peaks in electric and magnetic superlattices. Eur. Phys. J. B 16, 389–392 (2000)

    Article  ADS  Google Scholar 

  • Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 60, 1515–1518 (1999)

    Article  ADS  Google Scholar 

  • Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Erratum: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 63(20), 209901 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2016ZX-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Z. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H.Z., Feng, S. & Zhang, Y. Resonant peak splitting in finite periodic superlattices with an unit cell of two barriers and two wells on monolayer graphene. Opt Quant Electron 51, 158 (2019). https://doi.org/10.1007/s11082-019-1873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1873-1

Keywords

Navigation