Skip to main content
Log in

Modeling the effects of interband and intraband transitions on phase and gain stabilities of quantum dot semiconductor optical amplifiers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effects of interband and intraband transitions on the gain and phase stabilities in quantum dot semiconductor optical amplifier (QD-SOA) are investigated both temporally and spectrally employing electrical and optical pumping schemes. For this purpose, the carrier rate equations in different energy states coupled to the traveling wave optical field equation have been numerically solved to derive the dynamical behavior of QD-SOA. Our results show that the gain and phase response can be stabled under optical pumping (OP) scheme because the role of the interband and intraband transitions on the dynamics of QD-SOA is reduced. This behavior leads to high-speed pattern effect-free cross-phase modulation (XPM) in QD-SOA. It is found that optically pumped QD-SOA can have high performance in phase based applications. Moreover, it is shown that under OP scheme although the QD-SOA has lower gain value and slower gain recovery time, the ultrafast cross-gain modulation (XGM) without pattern effect is possible and the phase is recovered within a shorter time compared to EP scheme. The behavior arises from the different capacity of the carrier reservoir for pumping schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abedi, K., Taleb, H.: Phase recovery acceleration in quantum-dot semiconductor optical amplifiers. J. Lightwave Technol. 30(12), 1924–1930 (2012)

    Google Scholar 

  • Akiyama, T., Ekawa, M., Sugawara, M., Kawaguchi, K., Hisao, S., Kuramata, A., Ebe, H., Arakawa, Y.: An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005)

    Article  ADS  Google Scholar 

  • Baghban, H., Oliaee, R., Yadipour, R., Rostami, A.: Quantum dot semiconductor optical amplifiers: optical pumping versus electrical pumping. J. Opt. 13(3), 035406 (2011)

    Article  ADS  Google Scholar 

  • Berg, T.W., Mork, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40(11), 1527–1539 (2004)

    Article  ADS  Google Scholar 

  • Berg, T.W., Bischoff, S., Magnusdottir, I., Mork, J.: Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photonics Technol. Lett. 13(6), 541–543 (2001a)

    Article  ADS  Google Scholar 

  • Berg, T.W., Bischoff, S., Mork, J.: Electrical versus optical pumping of quantum dot amplifiers. In: Proceedings 27th European Conference on Optical Communication (Cat. No. 01TH8551), vol. 1, pp. 34–35 (2001b)

  • Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, F., Mao, M.H., Bimberg, D.: Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000)

    Article  ADS  Google Scholar 

  • Capua, A., Karni, O., Eisenstein, G.: A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework. IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013)

    Article  Google Scholar 

  • Chuang, S.L.: Physics of Photonic Devices, 2nd edn. Wiley, New York (2009)

    Google Scholar 

  • Dommers, S., Temnov, V.V., Woggon, U., Gomis, J., Martinez-Pastor, J., Laemmlin, M., Bimberg, D.: Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett. 90(3), 033508 (2007)

    Article  ADS  Google Scholar 

  • Ezra, Y.B., Lembrikov, B.I.: Semiconductor optical amplifier based on a quantum dot-in-a-well (QDWELL) structure under optical pumping. IEEE J. Quantum Electron. 50(5), 340–347 (2014)

    Article  ADS  Google Scholar 

  • Henry, C.: Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982)

    Article  ADS  Google Scholar 

  • Izadyar, S.M., Razaghi, M., Hassanzadeh, A.: Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing. Appl. Opt. 56(12), 3599–3607 (2017)

    Article  ADS  Google Scholar 

  • Kim, J., Yu, B.-A.: Comparison of gain and phase recovery dynamics among optical pumping schemes in quantum-dot semiconductor optical amplifiers. JOSA B 31(10), 2419–2429 (2014)

    Article  ADS  Google Scholar 

  • Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44(7), 658–666 (2008)

    Article  ADS  Google Scholar 

  • Kim, J., Meuer, C., Bimberg, D., Eisenstein, G.: Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 94(4), 041112 (2009a)

    Article  ADS  Google Scholar 

  • Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45(3), 240–248 (2009b)

    Article  ADS  Google Scholar 

  • Kim, J., Meuer, C., Bimberg, D., Eisenstein, G.: Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(3), 405–413 (2010a)

    Article  ADS  Google Scholar 

  • Kim, J., Meuer, C., Bimberg, D., Eisenstein, G.: Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(11), 1670–1680 (2010b)

    Article  ADS  Google Scholar 

  • Kuntze, S.B., Zilkie, A.J., Pavel, L., Aitchison, J.S.: Nonlinear state–space model of semiconductor optical amplifiers with gain compression for system design and analysis. J. Lightwave Technol. 26(14), 2274–2281 (2008)

    Article  ADS  Google Scholar 

  • Lingnau, B., Herzog, B., Kolarczik, M., Woggon, U., Lüdge, K., Owschimikow, N.: Dynamic phase response and amplitude-phase coupling of self-assembled semiconductor quantum dots. Appl. Phys. Lett. 110(24), 241102 (2017)

    Article  ADS  Google Scholar 

  • Majer, N., Lüdge, K., Schöll, E.: Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82(23), 235301 (2010)

  • Nielsen, T.R., Gartner, P., Jahnke, F.: Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69(23), 235314 (2004)

  • O’Driscoll, I., Piwonski, T., Houlihan, J., Huyet, G., Manning, R., Corbett, B.: Phase dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91, 263506-1–263506-3 (2007)

    ADS  Google Scholar 

  • Rahimi, J., Ahmadi, V., Yavari, M.H.: Modeling and analysis of distributed feedback quantum dot passively mode-locked lasers. Appl. Opt. 55(19), 5102–5109 (2016)

    Article  ADS  Google Scholar 

  • Sugawara, M.: Self-assembled InGaAs/GaAs quantum dots. In: Sugawara, M. (ed.) Semiconductors and Semimetals, vol. 60. Academic Press, San Diego (1999)

    Google Scholar 

  • Sugawara, M., Mukai, K., Nakata, Y., Ishikawa, H., Sakamoto, A.: Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers. Phys. Rev. B 61(11), 7595–7603 (2000)

    Article  ADS  Google Scholar 

  • Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s−1 and a new scheme of 3R regenerators. Meas. Sci. Technol. 13(11), 1683–1691 (2002)

    Article  ADS  Google Scholar 

  • Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 69(23), 235332 (2004)

  • Uskov, A.V., Berg, T.W., Mork, J.: Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 40(3), 306–320 (2004a)

    Article  ADS  Google Scholar 

  • Uskov, A., O’Reilly, E., McPeake, D., Ledentsov, N., Bimberg, D., Huyet, G.: Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states. Appl. Phys. Lett. 84(2), 272–274 (2004b)

    Article  ADS  Google Scholar 

  • Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., Bimberg, D., Leuthold, J.: Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16(1), 170–178 (2008)

    Article  ADS  Google Scholar 

  • Yavari, M.H., Ahmadi, V.: Effects of carrier relaxation and homogeneous broadening on dynamic and modulation behavior of self-assembled quantum-dot laser. IEEE J. Sel. Top. Quantum Electron. 17(5), 1153–1157 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasan Yavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei-Oghani, M., Yavari, M.H. Modeling the effects of interband and intraband transitions on phase and gain stabilities of quantum dot semiconductor optical amplifiers. Opt Quant Electron 50, 374 (2018). https://doi.org/10.1007/s11082-018-1644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1644-4

Keywords

Navigation