Skip to main content
Log in

A novel time and wavelength interleaved optical pulsed signal for a high resolution photonic analogue to digital converter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents a parallel architecture for a photonic Analog to Digital Converter (ADC) in a direct conversion receiver. A novel technique for the generation of time and wavelength interleaved laser source having a broad spectrum and a repetition rate of 8 GHz is proposed for the sampling of the photonic ADC. The quantization is realized in electrical domain by employing four state of the art ADCs , each having a sampling rate of 2 GHz and a resolution of 10 bit. We investigate the performance of our novel architecture by computing the Signal to Noise Ratio and comparing it with the conventional electronic ADC. Additionally we have also observed the effect of laser jitter on the sensitivity of a direct conversion receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al Qubaisi, K.E., Khilo, A.: Photonic analog-to-digital converters. In: General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, pp. 1–3. IEEE (2014)

  • Clark, T.R., Dennis, M.L.: Toward a 100-Gsample/s photonic AD converter. IEEE Photonics Technol. Lett. 13(3), 236–238 (2001)

    Article  ADS  Google Scholar 

  • Coppinger, F., Bhushan, A.S., Jalali, B.: Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999)

    Article  ADS  Google Scholar 

  • Esman, D.J., Wiberg, A.O., Alic, N., Radic, S.: Highly linear broadband photonic-assisted Q-band ADC. J. Lightw. Technol. 33(11), 2256–2262 (2015)

    Article  ADS  Google Scholar 

  • Farkas, G., Tth, C.: Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168(5–6), 447–450 (1992)

    Article  ADS  Google Scholar 

  • Fok, M.P., Lee, K.L., Shu, C.: 4 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion. IEEE Photonics Technol. Lett. 16(3), 876–87 (2004)

    Article  ADS  Google Scholar 

  • Ghafoor, S., Hanzo, L.: Reduced Dispersion Duplex DQPSK radio-over-fiber communications using single-laser-based multiple side-bands. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2011, June)

  • Ghelfi, P., Laghezza, F., Scotti, F., Serafino, G., Capria, A., Pinna, S., Onori, D., Porzi, C., Scaffardi, M., Malacarne, A., Vercesi, V.: A fully photonics-based coherent radar system. Nature 507(7492), 341–345 (2014)

    Article  ADS  Google Scholar 

  • Han, Y., Jalali, B.: Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightw. Technol. 21(12), 3085–3103 (2003)

    Article  ADS  Google Scholar 

  • Laghezza, F., Scotti, F., Ghelfi, P., Bogoni, A., Pinna, S.: Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications. In: 2013 IEEE Radar Conference (RadarCon13), pp. 1–5. IEEE (2013, April)

  • Ma, L., Ghelfi, P., Yao, M., Berizzi, F., Bogoni, A.: Effective sample parallelization in a single nonlinear device for high sampling rate photonic assisted ADC. In: Photonics in Switching (p. PWD1). Optical Society of America (2010)

  • Nairn, D.G.: Time-interleaved analog-to-digital converters. In: 2008 IEEE Custom Integrated Circuits Conference (2008, September)

  • Namgoong, W., Meng, T.H.: Direct-conversion RF receiver design. IEEE Trans. Commun. 49(3), 518–529 (2001)

    Article  MATH  Google Scholar 

  • Ng, W., Rockwood, T.D., Sefler, G.A., Valley, G.C.: Demonstration of a large stretch-ratio photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 Ghz. IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012)

    Article  ADS  Google Scholar 

  • Noguchi, K., Mitomi, O., Miyazawa, H.: Millimeter-wave Ti:LiNbO3 optical modulators. J. Lightw. Technol. 16(4), 615–619 (1998)

    Article  ADS  Google Scholar 

  • Oda, S.I., Okamoto, S.I., Maruta, A.: March. A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion. In: Nonlinear Guided Waves and Their Applications (p. TuB3). Optical Society of America (2004)

  • Pierno, L., Dispenza, M., Tonelli, G., Bogoni, A., Ghelfi, P., Poti, L.: A Photonic ADC for radar and EW applications based on modelocked laser. In: International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-pacific Microwave Photonics Conference, mwp/apmp 2008, pp. 236–239. IEEE (2008)

  • Razavi, B.: Design considerations for direct-conversion receivers. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(6), 428–435 (1997)

    Article  Google Scholar 

  • Sakata, H.: Photonic analog-to-digital conversion by use of nonlinear FabryPerot resonators. Appl. Opt. 40(2), 240–248 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  • Shoop, B.L.: Photonic Analog-to-Digital Conversion, vol. 81. Springer, Berlin (2012)

    Google Scholar 

  • Siegman, A., Kuizenga, D.: Proposed method for measuring picosecond pulsewidths and pulse shapes in cw mode-locked lasers. IEEE J. Quantum Electron. 6(4), 212–215 (1970)

    Article  ADS  Google Scholar 

  • Song, Y., Kim, C., Jung, K., Kim, H., Kim, J.: Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime. Opt. express 19(15), 14518–14525 (2011)

    Article  ADS  Google Scholar 

  • Taylor, H.F.: An electrooptic analog-to-digital converter. Proc. IEEE 63(10), 1524–1525 (1975)

    Article  Google Scholar 

  • Tilden, S.J., Linnenbrink, T.E., Green, P.J.: Overview of IEEE-STD-1241 standard for terminology and test methods for analog-to-digital converters. In: Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999. IMTC/99, vol. 3, pp. 1498–1503. IEEE (1999)

  • Valley, G.C.: Photonic analog-to-digital converters. Opt. Express 15(5), 1955–1982 (2007)

    Article  ADS  Google Scholar 

  • Walden, R.H.: Analog to Digital Conversion in the Early TwentyFirst Century. Wiley Encyclopedia of Computer Science and Engineering, New York (2008)

    Google Scholar 

  • Williamson, R.C., Juodawlkis, P. W., Wasserman, J. L., Betts, G. E., Twichell, J. C.: Effects of crosstalk in demultiplexers for photonic analog-to-digital converters. J. Lightw. Technol. 19(2), 230–236 (2001)

    Article  ADS  Google Scholar 

  • Wu, G., Li, S., Li, X., Chen, J.: 18 wavelengths 83.9 Gs/s optical sampling clock for photonic A/D converters. Opt. Express 18(20), 21162–21168 (2010)

    Article  ADS  Google Scholar 

  • Xu, C., Liu, X.: Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Opt. Lett. 28(12), 986–988 (2003)

    Article  ADS  Google Scholar 

  • Xu, C., Zheng, S., Chen, X., Chi, H., Jin, X., Zhang, X.: Photonic-assisted time-interleaved adc based on optical delay line. J. Opt. 18, 015704 (2016). https://doi.org/10.1088/2040-8978/18/1/015704

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, H.A., Ghafoor, S. A novel time and wavelength interleaved optical pulsed signal for a high resolution photonic analogue to digital converter. Opt Quant Electron 50, 98 (2018). https://doi.org/10.1007/s11082-018-1358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1358-7

Keywords

Navigation