Skip to main content
Log in

Analysis of dark current considering trap-assisted tunneling mechanism for InGaAs PIN photodetectors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In0.53Ga0.47As PIN photodetectors were fabricated and their dark currents were measured. Based on the analysis of different mechanisms, a complete dark current model considering trap-assisted tunneling (TAT) mechanism under low and intermediate reverse bias is constructed by studying the electric fields and carrier generation-recombination rates. The obtained current–voltage experimental results under dark conditions are in good agreement with our simulation using this complete model. The contribution of each mechanism is investigated, and to evaluate the dominant factor deriving from Shockley–Read–Hall generation or TAT, a critical voltage (\(V_{cri}\)) where \(I_{TAT} = I_{SRH} \approx 0.5I_{dark}\) is proposed. In addition, the effects of thickness and doping concentration of absorption layer on \(V_{cri}\) are discussed in detail, from which we demonstrate that \(I_{TAT}\) is the dominant component of dark current for those photodetectors operating under the reverse bias of 5 V if the thickness of absorption layer is less than 1 μm when the doping concentration is 1 × 1015 cm−3, or the doping concentration of absorption layer is more than 7 × 1015 cm−3 when the thickness is 2 μm. The effect of temperature on dark current due to TAT is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arshad, T.S.M., Othman, M.A., Yasin, N.Y.M., Taib, S.N., Ismail, M.M., Napiah, Z.A.F.M., et al.: Comparison on IV characteristics analysis between Silicon and InGaAs PIN photodiode. In: International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering. IEEE (2014). https://doi.org/10.1109/ICICI-BME.2013.6698467

  • Atlas User’s Manual. SILVACO International (2010)

  • Chang, S.H., Fang, Y.K., Ting, S.F., Chen, S.F., Lin, C.Y., Wu, C.Y.: Ultra high performance planar InGaAs PIN photodiodes for high speed optical fiber communication. Sens. Actuators A (2007). https://doi.org/10.1016/j.sna.2006.04.023

    Google Scholar 

  • Chen, B., Yuan Jr., J., Holmes, A.L.: Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes. Opt. Quantum Electron. (2013). https://doi.org/10.1007/s11082-012-9624-6

    Google Scholar 

  • Downs, C., Vandervelde, T.E.: Progress in infrared photodetectors since 2000. Sensors (2013). https://doi.org/10.3390/s130405054

    Google Scholar 

  • Forrest, S.R.: Performance of InxGa1−xAsyP1−y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J. Quantum Electron. 17(2), 217–226 (1981)

    Article  ADS  Google Scholar 

  • Forrest, S.R., Leheny, R.F., Nahory, R.E., Pollack, M.A.: In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling. Appl. Phys. Lett. (1980). https://doi.org/10.1063/1.91922

    Google Scholar 

  • Hall, R.N.: Electron-hole recombination in germanium. Proc. Phys. Soc. (1952). https://doi.org/10.1103/PhysRev.87.387

    Google Scholar 

  • Hoogeveen, R.W.M., Ronald, J.V.D.A., Goede, A.P.H.: Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on sciamachy for space-based spectrometry of the earth atmosphere. Infrared Phys. Technol. (2001). https://doi.org/10.1016/S1350-4495(00)00061-X

    Google Scholar 

  • Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G., O'hara, F.G.: A new recombination model describing heavy-doping effects and low-temperature behaviour[C]. In Electron Devices Meeting, 1989. IEDM '89. Technical Digest. International, pp. 307–310. IEEE (1989)

  • Ishimura, E., Kimura, T., Shiba, T., Mihashi, Y., Namizaki, H.: Dark current and diffusion length in InGaAs photodiodes grown on GaAs substrates. Appl. Phys. Lett. (1990). https://doi.org/10.1063/1.102724

    Google Scholar 

  • Ji, X., Liu, B., Xu, Y., Tang, H., Li, X., Gong, H.M., et al.: Deep-level traps induced dark currents in extended wavelength InxGa1−xAs/InP photodetector. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4838041

    Google Scholar 

  • Ji, X., Liu, B., Tang, H., Yang, X., Li, X., Gong, H.M., et al.: 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Adv. (2014). https://doi.org/10.1063/1.4894142

    Google Scholar 

  • Jiang, X., Itzler, M.A., Ben-Michael, R., Slomkowski, K.: InGaAsP–InP avalanche photodiodes for single photon detection. IEEE J. Sel. Top. Quantum Electron. (2007). https://doi.org/10.1109/JSTQE.2007.903001

    Google Scholar 

  • Kosa, A., Stuchlíkova, L., Harmatha, L., Kovac, J., Badura, M., Bielak, K., Tlaczala: DLTFS study of InGaAs/AlInAs heterostructures grown on n-InP: S substrates. In: 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE (2016). https://doi.org/10.1109/ASDAM.2016.7805917

  • Kowalczyk, A.E., Ornoch, L., Muszalski, J., Kaniewski, J.: Deep centers in InGaAs/InP layers grown by molecular beam epitaxy. Opt. Appl. 35(4), 457–463 (2005)

    Google Scholar 

  • Linga, K.R., Olsen, G.H., Ban, V.S., Joshi, A.N., Kosonocky, W.F.: Dark current analysis and characterization of InxGa1−xAs/InAsyP1−y graded photodiodes with x > 0.53 for response to longer wavelengths (> 1.7 μm). J. Lightwave Technol. (1992). https://doi.org/10.1109/50.156844

    Google Scholar 

  • Mitsubishi Electric. http://www.mitsubishielectric-mesh.com/products/guang/info/pdto/2_5gbu.php

  • Noh, I., Noh, H., Kim, Y., Lee, K., Yang, K.: A novel deep guard-ring InGaAs PIN photodiode structure reducing a crosstalk in SWIR imaging detection. In: Compound Semiconductor Week. IEEE (2016). https://doi.org/10.1109/ICIPRM.2016.7528622

  • Olsen, G.H., Joshi, A.M., Ban, V.S., Woodruff, K.M., Gasparian, G.A., Lange, M.J, Forrest, S.R.: Multiplexed 256 element InGaAs detector arrays for 0.8–1.7 μm room-temperature operation. In: International Society for Optics and Photonics 32nd Annual Technical Symposium (1988). https://doi.org/10.1117/12.948311

  • Onat, B.M., Masaun, N., Ettenberg, M.H., Dries, C.: Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging. In: International Society for Optics and Photonics Defense and Security Symposium (2007). https://doi.org/10.1117/12.720522

  • Onat, B.M., Jiang, X., Itzler, M. (2009). A systematic approach to dark current reduction in InGaAs-based photodiode arrays for shortwave infrared imaging. In: Leos Meeting Conference Proceedings, Leos ‘09. IEEE, pp. 231–232. IEEE

  • Parks, J.W., Smith, A.W., Brennan, K.F., Tarof, L.E.: Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes. IEEE Trans. Electron Devices (1996). https://doi.org/10.1109/16.544382

    Google Scholar 

  • Philippe, P., Poulain, P., Kazmierski, K., De Cremoux, B.: Dark-current and capacitance analysis of InGaAs/InP photodiodes grown by metalorganic chemical vapor deposition. J. Appl. Phys. (1986). https://doi.org/10.1063/1.336447

    Google Scholar 

  • Shen, S.C.: Comparison and competition between MCT and QW structure material for use in IR detectors. Microelectron. J. 25(8), 713–739 (1994)

    Article  Google Scholar 

  • Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. (1952). https://doi.org/10.1103/PhysRev.87.835

    MATH  Google Scholar 

  • Trommer, R., Albrecht, H.: Confirmation of tunneling current via traps by DLTS measurements in InGaAs photodiodes. Jpn. J. Appl. Phys. (1983). https://doi.org/10.1143/JJAP.22.L364

    Google Scholar 

  • Vallone, M., Mandurrino, M., Goano, M., Bertazzi, F., Ghione, G., Schirmacher, W., et al.: Numerical modeling of SRH and tunneling mechanisms in high-operating-temperature MWIR HgCdTe photodetectors. J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3767-8

    Google Scholar 

  • Wang, X.D., Hu, W.D., Chen, X.S., Lu, W., Tang, H.J., Li, T., et al.: Dark current simulation of Inp/In0.53Ga0.47As/Inp p–i–n photodiode. Opt. Quantum Electron. (2008). https://doi.org/10.1109/NUSOD.2008.4668227

    Google Scholar 

  • Wang, Y.S., Chang, S.J., Tsai, C.L., Wu, M.C.: High-speed InGaAs P–I–N photodetector with planar buried heterostructure. IEEE Trans. Electron Devices (2009). https://doi.org/10.1109/TED.2009.2018170

    Google Scholar 

  • Zeng, Q.Y., Wang, W.J., Wen, J., Xu, P.X., Hu, W.D., Li, Q., et al.: Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Opt. Quantum Electron. (2015). https://doi.org/10.1007/s11082-014-0024-y

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (NSFC) (61574019, 61674018, 61674020), the Fund of State Key Laboratory of Information Photonics and Optical Communications and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130005130001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Huang, Y., Fei, J. et al. Analysis of dark current considering trap-assisted tunneling mechanism for InGaAs PIN photodetectors. Opt Quant Electron 49, 407 (2017). https://doi.org/10.1007/s11082-017-1242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1242-x

Keywords

Navigation