Skip to main content
Log in

Eigenmodes of finite length silicon-on-insulator microring resonator arrays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper the eigenmodes of finite length microring resonator arrays have been systematically studied, both analytically using temporal coupled mode theory (CMT), and numerically using two-dimensional finite element method (FEM). The method for obtaining the values of parameters appearing in simplified CMT model using results of FEM calculations is presented. Calculations were carried out by COMSOL FEM packages for a wide range of distances between the rings. The obtained results reveal that the rotational degeneracy is preserved for a wide range of interrings distances. It is shown how the eigenvalue spectrum depends on the number of cavities in the system. The differences for the cases of odd and even numbers of rings, and its implications on actual applications, are discussed in details. The central branch appearing in odd-number arrays plays significant role for the delay-lines and optical buffering applications. Based on the first order perturbation theory, an analytical expressions for the eigenfrequencies of arbitrary (finite) length linear array of microring resonators are derived. The analytical expressions describing eigenfrequencies are useful for determining positions of the maxima in transfer characteristics in microring arrays with external buses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayer, M., Gutbrod, T., Reithmaier, J.P., Forchel, A.: Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2583–2585 (1998)

    Article  ADS  Google Scholar 

  • Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)

    Article  Google Scholar 

  • Boriskina, S.V.: Photonic molecules and spectral engineering. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds.) Photonic Microresonator Research and Applications. Springer, New York (2010)

    Google Scholar 

  • COMSOL MULTIPHYSICS. COMSOL, INC., BURLINGTON, MA, USA (2008)

  • Chakravarty, S., Bhattacharya, P., Topol’ančik, J., Wu, Z.: Electrically injected quantum dot photonic crystal microcavity light emitters and microcavity arrays. J. Phys. D Appl. Phys. 40, 2683–2690 (2007)

    Article  ADS  Google Scholar 

  • Chen, Y., Blair, S.: Nonlinearity enhancement in finite coupled-resonator slow-light waveguides. Opt. Express 12, 3353–3366 (2004)

    Article  ADS  Google Scholar 

  • Chremmos, I., Schwelb, O., Uzunoglu, N.: Photonic Microresonator Research and Applications. Springer, New York (2010)

    Book  Google Scholar 

  • Chremmos, I., Uzunoglu, N.: Modes of the infinite square lattice of coupled microring resonators. J. Opt. Soc. Am. A 25, 3043–3050 (2008)

    Article  ADS  Google Scholar 

  • Donzella, V., Sherwali, A., Flueckiger, J., Grist, S.M., Fard, S.T., Chrostowski, L.: Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 23, 4791–4803 (2015)

    Article  ADS  Google Scholar 

  • Escalante, J.M., Martnez, A., Laude, V.: Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. J. Phys. D Appl. Phys. 46, 475301 (2013)

    Article  ADS  Google Scholar 

  • Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics—from a microresonator perspective. Laser Photon. Rev. 6, 145–177 (2012)

    Article  Google Scholar 

  • Franchimon, E.F., Hiremath, K.R., Stoffer, R., Hammer, M.: Interaction of whispering gallery modes in integrated optical microring or microdisk circuits—hybrid coupled mode theory model. J. Opt. Soc. Am. B 30, 1048–1057 (2013)

    Article  ADS  Google Scholar 

  • Haus, H.A.: Waves and Fields in Optoelectronics. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  • Haus, H.A., Huang, W.: Coupled-mode theory. Proc. IEEE 19, 1505–1518 (1991)

    Article  Google Scholar 

  • Li, Q., Wang, T., Yikai, S., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367–8382 (2010)

    Article  ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 9981005 (1997)

    Google Scholar 

  • Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W.: 1998 Ultra-compact \({\rm Si-SiO}\) microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998)

    Google Scholar 

  • Liu, H.C., Yariv, A.: Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs). Opt. Express 19, 17653–17668 (2011)

    Article  ADS  Google Scholar 

  • Manolatou, C., Khan, M.J., Fan, S., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: Coupling of Modes Analysis of Resonant Channel Add-Drop Filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999)

    Article  ADS  Google Scholar 

  • McIsaac, C.P.R.: Symmetry-induced modal characteristics of uniform waveguides—II. Theory. IEEE Trans. Microw. Theory Tech. MTT–23, 429–433 (1975)

    Article  ADS  Google Scholar 

  • McIsaac, P.R.: Symmetry-induced modal characteristics of uniform waveguides 1: summary of results. IEEE Trans. Microw. Theory Tech. MTT–23, 421–429 (1975)

    Article  ADS  Google Scholar 

  • Moller, B.M., Woggon, U.: Band formation in coupled-resonator slow-wave structures. Opt. Express 15, 17362–17370 (2007)

    Article  ADS  Google Scholar 

  • Morichetti, F., Ferrari, C., Canciamilla, A., Melloni, A.: The rst decade of coupled resonator optical waveguides—bringing slow light to applications. Laser Photon. Rev. 6, 74–96 (2012)

    Article  Google Scholar 

  • Poon, J.K.S., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., Yariv, A.: Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express 12, 90–103 (2004)

    Article  ADS  Google Scholar 

  • Poon, J.K.S., Scheuer, J., Xu, Y., Yariv, A.: Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004)

    Article  ADS  Google Scholar 

  • Poon, J.K.S., Yariv, A.: Active coupled-resonator optical waveguides. I. Gain enhancement and noise. J. Opt. Soc. Am. B 24, 2378–2388 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Popović, M.A., Manolatou, C., Watts, M.R.: Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006)

    Article  ADS  Google Scholar 

  • Radjenović, B., Radmilović-Radjenović, M.: Excitation of confined modes in silicon slotted waveguides and microring resonators for sensing purposes. IEEE Sens. J. 14, 1412–1417 (2014)

    Article  Google Scholar 

  • Smotrova, E.I., Nosich, A.I., Benson, T.M., Sewell, P.: Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006)

    Article  Google Scholar 

  • Stefanou, N., Modinos, A.: Impurity bands in photonic insulators. Phys. Rev. B. 57, 12127–12133 (1998)

    Article  ADS  Google Scholar 

  • Sutton, A.P., Finnis, M.W., Pettifor, D.G., Ohta, Y.: The tight-binding bond model. J. Phys. C Solid State Phys. 21, 35 (1988)

    Article  ADS  Google Scholar 

  • Xia, F., Šekarić, L., Vlasov, Y.: Ultracompact optical buffers on a chip. Nat. Photon. 1, 65–71 (2007)

    Article  ADS  Google Scholar 

  • Xiao, S., Khan, M.H., Shen, H., Qi, M.: Silicon-on-insulator microring add-drop filters with free spectral ranges over \({\rm 30\, nm}\). J. Lightwave Technol. 26, 228–236 (2008)

    Article  ADS  Google Scholar 

  • Yang, Y.D., Huang, Y.Z.: Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys. Rev. A 76, 023822 (2007)

    Article  ADS  Google Scholar 

  • Yang, Y.D., Huang, Y.Z.: Mode characteristics and directional emission for square microcavity lasers. J. Phys. D Appl. Phys. 49, 253001 (2016). (18pp)

    Article  ADS  Google Scholar 

  • Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  ADS  Google Scholar 

  • Yueh, W.C.: Eigenvalues of several tridiagonal matrices. Appl. Math. E Notes 5, 66–74 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work has also been carried out under Ministry of Education and Science Republic of Serbia O171037 and 151005B projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Radmilović-Radjenović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radjenović, B., Radmilović-Radjenović, M. & Beličev, P. Eigenmodes of finite length silicon-on-insulator microring resonator arrays. Opt Quant Electron 49, 149 (2017). https://doi.org/10.1007/s11082-017-0984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0984-9

Keywords

Navigation