Skip to main content
Log in

Stationary phase-space information in a qubit interacting non-linearly with a lossy single-mode field in the off-resonant case

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An analytical description of a qubit interacting non-linearly and non-resonantly with a lossy cavity via intensity-dependent coupling has been obtained. With the amplitude cavity damping as a particular type of the thermal amplitude reservoir damping, Wehrl entropy and Wehrl density are used to investigate the dynamics of the loss of both qubit coherence and information. We show that the Q-function Wehrl entropy and its density are very sensitive not only to the amplitude cavity damping and the intensity of the coherent state but also to the frequency detuning. The information of the phase space and the coherence are quickly lost due to the coupling to the environment. When the qubit interacting non-linearly with the lossy cavity, we observe: (1) The mixedness of the atomic state can be decreased by increasing the coupling to the environment. (2) For the off-resonance case, if the cavity damping is increased, the information of the mixed evolved state can be protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdalla, M.S., Obada, A.-S.F., Khalil, E.M., Mohamed, A.-B.A.: Wehrl entropy information and purity of a SC-charge qubit interacting with a lossy cavity field. Solid State Commun. 184, 56–62 (2014)

    Article  ADS  MATH  Google Scholar 

  • Anderson, A., Halliwell, J.J.: Information-theoretic measure of uncertainty due to quantum and thermal fluctuations. Phys. Rev. D 48, 2753–2765 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Barnett, S.M., Knight, P.L.: Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 33, 2444 (1986)

    Article  ADS  Google Scholar 

  • Brouri, R., Beveratos, A., Poizat, J.-P., Grangier, P.: Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000)

    Article  ADS  Google Scholar 

  • Bužek, V., Keitel, C.H., Knight, P.L.: Sampling entropies and operational phase-space measurement. I. General formalism. Phys. Rev. A 51, 2575 (1995)

    Article  ADS  Google Scholar 

  • Eleuch, H.: Entanglement and autocorrelation function in semiconductor microcavities. Int. J. Mod. Phys. B 29, 5653–5662 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eleuch, H., Guérin, S., Jauslin, H.R.: Effects of an environment on a cavity-quantum-electrodynamics system controlled by bichromatic adiabatic passage. Phys. Rev. A 85, 013830 (2012)

    Article  ADS  Google Scholar 

  • El-Orany, F.A.A.: Marginal and density atomic Wehrl entropies for the Jaynes–Cummings model. J. Phys. A Math. Theor. 41, 035303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264–314 (1940)

    MATH  Google Scholar 

  • Keitel, C.H., Wodkiewicz, K.: On the information entropy of squeezed states and the entropic uncertainty relation. Phys. Lett. A 167, 151–160 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Lounis, B., Orrit, M.: Single-photon sources. Rep. Prog. Phys 68, 1129–1179 (2005)

    Article  ADS  Google Scholar 

  • Michler, P., Imamoglu, A., Mason, M.D., Carson, P.J., Strouse, G.F., Buratto, S.K.: Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  ADS  Google Scholar 

  • Miranowicz, A., Bajer, J., Wahiddin, M.R.B., Imoto, N.: Wehrl information entropy and phase distributions of Schrdinger cat and cat-like states. J. Phys. A Math. Gen. 34, 3887–3896 (2001)

    Article  ADS  MATH  Google Scholar 

  • Mohamed, A.-B.A.: Long-time death of nonclassicality of a cavity field interacting with a charge qubit and its own reservoir. Phys. Lett. A 374, 4115–4119 (2010)

    Article  ADS  MATH  Google Scholar 

  • Mohamed, A.-B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015a)

    Article  ADS  Google Scholar 

  • Mohamed, A.-B., Eleuch, H.: Geometric phase in cavity QED containing a nonlinear optical medium and a quantum well. J. Mod. Opt. 62, 1630–1637 (2015b)

    Article  ADS  Google Scholar 

  • Mohamed, A.-B., Eleuch, H.: Wehrl information and mixedness of a Cooper-pair Box coupled to a cavity in a thermal reservoir. J. Korean Phys. Soc. 68, 513–519 (2016)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A.: Entropy and entanglement in the Jaynes-Cummings model with effects of cavity damping. J. Phys. B At. Mol. Opt. Phys. 41, 135503 (2008)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A.: Output entanglement from SU(1, 1) coherent states under nonlinear dissipation in the dispersive limit. J. Phys. A Math. Theor. 43, 025305 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Obada, A.-S.F., Abdel-Khalek, S., Mohamed, A.-B.A.: Information entropy and entanglement of a superconducting qubit coupled to a cavity field with its spontaneous decay. Opt. Quant. Electron. 45, 1287 (2013)

    Article  Google Scholar 

  • Obada, A.-S.F., Abdel-Khalek, S.: New features of the atomic Wehrl entropy and its density in multi-quanta two-level system. J. Phys. A Math. Gen. 37, 6573 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Obada, A.-S.F., Mohamed, A.-B.A.: Erasing information and purity of a quantum dot via its spontaneous decay. Solid State Commun. 151, 1824 (2011)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Mohamed, A.-B.A.: Death of entanglement and non-locality in a superconducting qubit-field entangled state in a thermal reservoir. Opt. Commun. 285, 3027–3031 (2012)

    Article  ADS  Google Scholar 

  • Puri, R.R., Agarwal, G.S.: Coherent two-photon transitions in Rydberg atoms in a cavity with finite Q. Phys. Rev. A 39, 3879 (1988)

    Article  ADS  Google Scholar 

  • Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001)

    Book  MATH  Google Scholar 

  • Sete, E.A., Svidzinsky, A.A., Eleuch, H., Yang, Z., Nevels, R.D., Scully, M.O.: Correlated spontaneous emission on the Danube. J. Mod. Opt. 57, 1311 (2010)

    Article  ADS  MATH  Google Scholar 

  • Sete, E.A., et al.: Using quantum coherence to generate gain in the XUV and X-ray: gain-swept superradiance and Lasing without inversion. IEEE J. Sel. Top. Quant. Electron. 18, 541–553 (2012)

    Article  Google Scholar 

  • Sete, E.A., Eleuch, H.: Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A 85, 043824 (2012)

    Article  ADS  Google Scholar 

  • Sugita, A.: Moments of generalized Husimi distributions and complexity of many-body quantum states. J. Phys. A Math. Gen. 35, L621–L626 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van Enk, S.J., Kimble, H.J.: On the classical character of control fields in quantum information processing. Quant. Inform. Comput. 2, 1–13 (2002)

    MathSciNet  MATH  Google Scholar 

  • Vieira, V.R., Sacramento, P.D.: Generalized phase-space representatives of spin-J operators in terms of Bloch coherent states. Ann. Phys. 242, 188–231 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Walls, D.F., Milburn, G.J.: Quantum Optics. Spinger, Berlin (1994)

    Book  MATH  Google Scholar 

  • Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deanship of scientific Research at Prince Sattam Bin Abdulaziz University under the Research Project No. 2016/01/6267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Eleuch, H. & Hessian, H.A. Stationary phase-space information in a qubit interacting non-linearly with a lossy single-mode field in the off-resonant case. Opt Quant Electron 49, 84 (2017). https://doi.org/10.1007/s11082-017-0917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0917-7

Keywords

Navigation