Skip to main content
Log in

Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel microstructure fiber based on side-polished fiber (SPF) was demonstrated. Polystyrene microspheres were self-assembled onto the side-polished surface of SPF to form the colloidal crystal cladding of the microstructure fiber. Because of the Bragg reflection of the colloidal crystals cladding and the strong interaction between evanescent field and colloidal crystal, three main valleys were observed in the transmission spectrum. The modulation amplitude of the valley was up to 12 dB. Furthermore, the transmission valley showed a high sensitivity of temperature. At the wavelength of 1524.25 nm—the position of valley, transmission optical power showed a maximum optical power variation of 14.7 dB in the range of 20–50 °C, the sensitivity of temperature was up to 0.487 dB/°C. The linear correlation coefficient was 99.84%. This SPF with colloidal crystals cladding shows a good potential in fiber sensing and other photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao, Q., Zhang, H., Wang, B., Ni, Z., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband grapheme polarizer. Nat. Photonics 5(7), 411–415 (2011)

    Article  ADS  Google Scholar 

  • Chen, Z., Liao, Y., Hu, Y., Xiong, S., Meng, Z., Jin, W.: Thermally poled panda fibre device with microstrip electrode. Electron. Lett. 36(22), 1839–1840 (2000)

    Article  Google Scholar 

  • Chen, Z., Qin, J., Pan, H., Zhang, J., Xiao, Y., Yu, J.: All-fiber integrated optical power monitor controller. Chin. J. Lasers 37(4), 1047–1052 (2010)

    Article  Google Scholar 

  • Chen, X., Luo, Y., Xu, M., Zhang, Y., He, Y., et al.: Refractive index and temperature sensing based on surface plasmon resonance fabricated on a side-polished fiber. Acta Optica Sinica 34(2), 0206005 (2014)

    Article  Google Scholar 

  • Ding, H., Cheng, Y., Gu, H., Zhao, Y., Wang, B., Gu, Z.: Tunable fiber Bragg grating based on responsive photonic crystals. Nanoscale 5(23), 11572–11576 (2013)

    Article  ADS  Google Scholar 

  • Fan, R., Chen, Z., Liu, L., Xiao, Y.: Optical fiber refractive sensor with double reflective wavelengths based on side polished fiber Bragg grating. Chin. J. Lasers 36(5), 1134–1139 (2009)

    Article  Google Scholar 

  • Fu, W., Hsiao, V., Tang, J., Wu, M., Chen, Z.: All fiber-optic sensing of light using side-polished fiber verlaid with photoresponsive liquid crystals. Sens. Actuators B-Chem. 156(1), 423–427 (2011)

    Article  Google Scholar 

  • Han, Y., Chen, Z., Cao, D., Yu, J., Li, H., He, X., Zhang, J., Luo, Y., Lu, H., Tang, J.: Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation. Sens. Actuators B-Chem. 196, 663–669 (2014)

    Article  Google Scholar 

  • Huang, X.J., Choi, Y.K.: Chemical sensors based on nanostructured material. Sens. Actuators B-Chem. 122(2), 659–671 (2007)

    Article  Google Scholar 

  • Lin, Y., Herman, P.R., Valdivia, C.E., Li, J., Kitaev, V., Ozin, G.A.: Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber. Appl. Phys. Lett. 86(12), 121106.1–121106.3 (2005)

    Google Scholar 

  • Lipomi, D.J., Martinez, R.V., Kats, M.A., Kang, S.H., Kim, P., Aizenberg, J., Capasso, F., Whitesides, G.M.: Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett. 11(2), 632–636 (2011)

    Article  ADS  Google Scholar 

  • Liu, Y., Liu, B., Feng, X., Zhang, W., Zhou, G., Yuan, S., Kai, G., Dong, X.: High-birefringence fiber loop mirrors and their applications as sensors. Appl. Opt. 44(12), 2382–2390 (2005)

    Article  ADS  Google Scholar 

  • Liu, Y., Qu, S., Li, Y.: Single micro channel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett. 38(3), 335–337 (2013)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S., Chen, H., Li, J., Fan, Z.: High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8(4), 046701 (2015a)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S., Chen, H., Fan, Z., Li, J.: Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photonics J. 7(2), 4500509 (2015b)

    Google Scholar 

  • Lu, H., Tian, Z., Yu, H., Yang, B., Jing, G., Liao, G., Zhang, J., Yu, J., Tang, J., Luo, Y.: Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing. Opt. Express 22(26), 32502–32508 (2014)

    Article  ADS  Google Scholar 

  • Luo, Y., Xia, L., Ma, J., Chen, Z., Lu, H.H., Yu, J.H., Zhong, Y.C.: Fabrication and characterization of a colloidal crystal cladding micro-fiber. IEEE Photonic Technol. Lett. 28(4), 406–409 (2016)

    Article  ADS  Google Scholar 

  • Pinto, A.M.R., Lopez-Amo, M.: Photonic crystal fibers for sensing applications. J. Sens. 2012(1), 276–283 (2012)

    Google Scholar 

  • Rajan, G., Semenova, Y., Mathew, J., Farrell, G.: Experimental analysis and demonstration of a low cost fibre optic temperature sensor system for engineering applications. Sens. Actuators A-Phys. 163, 88–95 (2010)

    Article  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  ADS  Google Scholar 

  • Tang, J., Chen, Z., Fan, R., Yu, J., Zhang, J.: Optical fiber sensor for the concentration of acetic acid based on fiber side polishing technique. J. Appl. Opt. 32(1), 115–119 (2011)

    Google Scholar 

  • Temelkuran, B., Hart, S.D., Benoit, G., Joannopoulos, J.D., Fink, Y.: Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission. Nature 420(6916), 650–653 (2003)

    Article  ADS  Google Scholar 

  • Tian, Z., Lu, H., Yang, B., Wang, Y.: Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing. IEEE Photonic Technol. Lett. 27(7), 798–801 (2015)

    Article  ADS  Google Scholar 

  • Wang, Q., Du, C., Zhang, J., Lv, R., Zhao, Y.: Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating. Opt. Commun. 377, 89–93 (2016)

    Article  ADS  Google Scholar 

  • Yan, H., Zhao, X., Qiao, C., Zhen, Z., Xiong, G., Li, Q., Wang, M., Han, D.: A colloidal crystal microstructure fiber: fabrication and characterization. Appl. Phys. B 107(1), 91–95 (2012)

    Article  ADS  Google Scholar 

  • Yan, H., Zhang, Z., Zhao, X., Zhen, Z., Hao, H., Wang, M.: Experimental research of liquid refractive index sensing by optical fiber and colloidal crystal’s photonic band-gap. Optik 125(8), 1914–1917 (2014)

    Article  Google Scholar 

  • Yoon, J., Seo, G., Cho, K., Kim, E., Kim, S., Kang, S.: Controllable in-line UV sensor using a side-polished fiber coupler with photo functional polymer. IEEE Photonics Technol. Lett. 15(6), 837–839 (2003)

    Article  ADS  Google Scholar 

  • Zhang, Y.C., Zhe, C., Jiang, P.F., Liu, L.H., Zeng, Y.X., Bai, C.H.: All-fiber thermo-optical variable optical attenuator. Chin. J. Lasers 34, 1110–1114 (2007)

    Google Scholar 

  • Zhang, J., Liao, G., Jin, S., Cao, D., Wei, Q., Lu, H., Yu, J., Cai, X., Tan, S., Xiao, Y., Tang, J., Luo, Y., Chen, Z.: All-fiber-optic temperature sensor based on reduced graphene oxide. Laser Phys. Lett. 11(3), 035901 (2014)

    Article  ADS  Google Scholar 

  • Zhao, J., Yin, G., Liao, C., Liu, S.: Rough side-polished fiber with surface scratches for sensing applications. IEEE Photonics J. 7(3), 1–7 (2015)

    Article  Google Scholar 

  • Zheng, L., Zhang, X., Ren, X., Wang, Y.: A comparison of Au and Ag metalized layer in microstructured optical fibers for surface Plasmon resonance excitation. Proc. SPIE Int. Soc. Opt. Eng. 7634, 1–6 (2009)

    Google Scholar 

  • Zubiate, P., Zamarreño, C.R., Del Villar, I., Matias, I.R., Arregui, F.J.: High sensitive refractometers based on lossy mode resonances LMRs supported by ITO coated D-shaped optical fibers. Opt. Express 23(19), 8045–8050 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China [61177075, 61275046, 61361166006, 61475066, 61405075, 61401176, 61505069, 61575084]; Natural Science Foundation of Guangdong Province [2014A030313377, 2014A030310205, 2015A030306046, 2015A030313320, 2016A030311019, 2016A030313079, 2016A030310098]; Science and technology projects of Guangdong Province [2014B010120002,2014B010117002,2015A020213006, 2015B010125007, 2016B010111003, 2016A010101017]; Project of Guangdong High Education [2013CXZDA005, 2014KQNCX025, YQ2015018]; Science and Technology Project of Guangzhou [201506010046, 201605030002, 201607010134].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xia, L., Chen, Z. et al. Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing. Opt Quant Electron 49, 66 (2017). https://doi.org/10.1007/s11082-017-0905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0905-y

Keywords

Navigation