Skip to main content
Log in

Resonant control of fluorescence from aluminium doped zinc oxide films

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Moderate fluorescence from aluminium doped zinc oxide films is detected. It is shown that this defect-related fluorescence can be controlled for the films deposited on the gilded glass and attached to the semicylinder prism. Namely the changes in the spectral shape, intensity and polarization of fluorescence were detected for certain resonant angles in case of detection through the prism. Maxima in fluorescence intensity were obtained for detection angles corresponding to minima in light reflection. The strength of electric field inside the layered structure is calculated and analysed. On the basis of this analysis coupling of fluorescent light with hybrid waveguide-plasmonic and waveguide modes at resonant detection angles is considered as the cause for obtained directional fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeles, F.: Optical properties of thin absorbing films. J. Opt. Soc. Am. 47(6), 473–482 (1957). doi:10.1364/JOSA.47.000473

    Article  ADS  Google Scholar 

  • Badugu, R., et al.: Radiative decay engineering 6: fluorescence on one-dimensional photonic crystals. Anal. Biochem. 442(1), 83–96 (2013). doi:10.1016/j.ab.2013.07.021

    Article  Google Scholar 

  • Badugu, R., et al.: Fluorescence spectroscopy with metal–dielectric waveguides. J. Phys. Chem. C 119, 16245–16255 (2015). doi:10.1021/acs.jpcc.5b04204

    Article  Google Scholar 

  • Boiko, V., et al.: Angular shaping of fluorescence from synthetic opal-based photonic crystal. Nanoscale Res. Lett. 10, 97 (2015). doi:10.1186/s11671-015-0781-y

    Article  ADS  Google Scholar 

  • Calander, N.: Surface plasmon-coupled emission and fabry–perot resonance in the sample layer: a theoretical approach. J. Phys. Chem. B 109(29), 13957–13963 (2005). doi:10.1021/jp0510544

    Article  Google Scholar 

  • Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. 1(7), 742–753 (1984). doi:10.1364/JOSAA.1.000742

    Article  ADS  Google Scholar 

  • Dong, Z., et al.: Fluorescent properties of ZnO nanostructures fabricated by hydrothermal method. J. Nanomater. 2012, 251276 (2012). doi:10.1155/2012/251276

    Google Scholar 

  • Grandidier, J., et al.: Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide. J. Microsc. 239(2), 167–172 (2010). doi:10.1111/j.1365-2818.2010.03368.x

    MathSciNet  Google Scholar 

  • Gryczynski, I., et al.: Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324(2), 170–182 (2004). doi:10.1016/j.ab.2003.09.036

    Article  Google Scholar 

  • Hakala, T., et al.: Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103, (053602-1)–(053602-4) (2009). doi:10.1103/PhysRevLett.103.053602

    Article  ADS  Google Scholar 

  • Jungwirth, N., et al.: A single-molecule approach to ZnO defect studies: single photons and single defects. J. Appl. Phys. 116, 043509 (2014). doi:10.1063/1.4890979

    Article  ADS  Google Scholar 

  • Kondratiev, V., et al.: Low temperature sol–gel technique for processing Al-doped zinc oxide films. Mater. Phys. Mech. 17(1), 38–46 (2013). http://www.ipme.ru/e-journals/MPM/no_11713/MPM117_08_kondratiev.pdf

  • Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23A, 2135–2136 (1968)

    ADS  Google Scholar 

  • Lackowicz, J.: Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001). doi:10.1006/abio.2001.5377

    Article  Google Scholar 

  • Lakowicz, J.: Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 324(2), 153–169 (2004). doi:10.1016/j.ab.2003.09.039

    Article  Google Scholar 

  • Liu, H., et al.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice Microstruct. 48, 458–484 (2010). doi:10.1016/j.spmi.2010.08.011

    Article  ADS  Google Scholar 

  • Liu, F., Nunzi, J.: Enhanced organic light emitting diode and solar cell performances using silver nano-clusters. Org. Electron. 13(9), 1623–1632 (2012). doi:10.1016/j.orgel.2012.04.027

    Article  Google Scholar 

  • Loot, A., et al.: Goniometric setup for plasmonic measurements and characterization of optical coatings. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds.) Nanomaterials Imaging Techniques, Surface Studies, and Applications Springer Proceedings in Physics, vol. 146, pp. 130–145. Springer, New York (2013). doi:10.1007/978-1-4614-7675-7. ISBN 978-1-4614-7674-0

    Chapter  Google Scholar 

  • Noginov, M., et al.: Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008). doi:10.1103/PhysRevLett.101.226806

    Article  ADS  Google Scholar 

  • Oulton, R., et al.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi:10.1038/nphoton.2008.131

    Article  Google Scholar 

  • Purcell, E.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  • Rakić, A., et al.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Ray, K., et al.: Plasmon-controlled fluorescence towards high-sensitivity optical sensing. Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2010). doi:10.1007/10_2008_9

    ADS  Google Scholar 

  • Sainidou, R., et al.: Extraordinary all-dielectric light enhancement over large volumes. Nano Lett. 10, 4450–4455 (2010)

    Article  ADS  Google Scholar 

  • Santory, C.: Single defects in diamonds. In: Migdall, A., Polyakov, S., Fan, J., Bienfang, J. (eds.) Single Photon Generation and Detection Physics and Applications, vol. 45. Elsevier, Amsterdam (2013). ISBN 9780123876959

    Google Scholar 

  • Seidel, J., et al.: Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005)

    Article  ADS  Google Scholar 

  • Stockman, M.: Spasers explained. Nat. Photonics 2, 327–329 (2008). doi:10.1038/nphoton.2008.85

    Article  ADS  Google Scholar 

  • Tumkur, T., et al.: Plasmon-mediated emission in the strong coupling regime. In: Proceedings of the CLEO: QELS_Fundamental Science 2015 conference FW3E.4 (2015), ISBN: 978-1-55752-968-8

  • Winter, G., Barnes, W.: Emission of light through thin silver films via near-field coupling to surface plasmon polaritons. Appl. Phys. Lett. 88, 051109 (2006). doi:10.1063/1.2170426

    Article  ADS  Google Scholar 

  • Yuk, J., et al.: Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens. Bioelectron. 26, 3213–3218 (2011). doi:10.1016/j.bios.2010.12.028

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Estonian Research Council (institutional project IUT34-27) and partially by ETF9283, Marie Curie ILSES Project No. 612620 and NATO SPS project NUKR.SFPP984702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Dolgov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgov, L., Kondratiev, V.I., Loot, A. et al. Resonant control of fluorescence from aluminium doped zinc oxide films. Opt Quant Electron 48, 522 (2016). https://doi.org/10.1007/s11082-016-0794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0794-5

Keywords

Navigation